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Abstract.

Background: Sociodemographic data indicate the progressive increase in life expectancy and the prevalence of Alzheimer’s
disease (AD). AD is raised as one of the greatest public health problems. Its etiology is twofold: on the one hand, non-
modifiable factors and on the other, modifiable.

Objective: This study aims to develop a processing framework based on machine learning (ML) and optimization algorithms
to study sociodemographic, clinical, and analytical variables, selecting the best combination among them for an accurate
discrimination between controls and subjects with major neurocognitive disorder (MNCD).

Methods: This research is based on an observational-analytical design. Two research groups were established: MNCD group
(n=46) and control group (n=38). ML and optimization algorithms were employed to automatically diagnose MNCD.
Results: Twelve out of 37 variables were identified in the validation set as the most relevant for MNCD diagnosis. Sensitivity
of 100% and specificity of 71% were achieved using a Random Forest classifier.

Conclusion: ML is a potential tool for automatic prediction of MNCD which can be applied to relatively small preclinical
and clinical data sets. These results can be interpreted to support the influence of the environment on the development of AD.
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INTRODUCTION dementia stands out, while other diseases, such car-
diovascular disease, chronic obstructive pulmonary

Sociodemographic data indicate the progressive disease, or diabetes, decrease [1]. These data do not
increase in life expectancy, and Spaniards have the only have population significance, but also have eco-
highest among European Union (EU) countries [1]. nomic and health consequences since 35% of men
Spain places it as an average of 83.4 years, while the and 65% of women over 65 years old have some
average in the EU is 80.9 years [1]. In 2018, there type of disability, which represents 52% of the health
were 101.1 million people aged 65 years or more liv- care costs in specialized care for people over 65, and
ing in the EU and this number is expected to increase 40% of the total health expenditure in those over
until 149.2 million in 2050 [2]. Among the causes 70. Therefore, both in the present and in the future,
of mortality, an increase in the mortality rate due to it is a priority to effectively and efficiently address

the expected changes in both the healthcare system
) ! (treatment of multiple diseases and chronicity) and in
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A study carried out by Niu et al. showed that the
prevalence of AD in Europe was 5.05% (95% CI,
4.73-5.39) [5], with Spain ranked third in the world
with the highest prevalence of dementia, equivalent
to 6.3% of Spaniards over 60 years of age [6, 7].
In addition, the data reveals an increasing trend in
the number of patients with dementia, predicting an
increase of 87% in the European region in the period
2010-2050 [5, 7, 8].

Prevalence of dementias according to data pub-
lished by the World Health Organization (WHO)
show that there are 50 million people in the world who
suffer from dementia. Approximately 10 million new
cases are registered each year. AD is the most com-
mon form of dementia, accounting for 60—70% of all
dementias [9].

In recent decades, there has been an evolution
in relation to AD diagnostic criteria. Since 1984,
the most widely used diagnostic criteria were those
of the NINCDS-ADRDA group [10]. In 2007, the
NINCDS-ADRDA criteria established a diagnosis
based on clinical criteria supported by complemen-
tary tests [11]. In 2011, the International Working
Group for new research criteria for the diagnosis of
AD (IWG-1) and the National Institute of Aging and
the Alzheimer’s Association (NIA-AA) modified the
previous criteria, specifying the probability or pos-
sibility in the diagnosis of AD [12]. In 2014, both
the IWG-2 and the NIA-AA specified in the diag-
nostic criteria the presence of an appropriate clinical
phenotype (typical or atypical) and a biomarker [13].
Later, in 2018, the NIA-AA criteria defined AD in
a strictly biological way using the biomarker profile
(ATN) [14]. The criteria for establishing the diagnosis
of AD inexorably evolve toward biomarkers in both
blood and cerebrospinal fluid. The interest in clini-
cal practice showed greater interest in the diagnosis
using biomarkers in blood plasma for better accessi-
bility and less invasiveness than in CSF. On the other
hand, the decrease in the cost and availability of diag-
noses using biomarkers (CSF, plasma, and image) is
urgent because not all the countries or all the hospi-
tals have the necessary material and can assume the
high cost in the diagnostic process [14-20].

Risk factors

The unmodifiable and established risk factors for
AD are age, sex, and genetic factors, with age being
the main one. On the other hand, modifiable risk fac-
tors related to healthy lifestyles or educational levels
have been identified and their optimization can lead

to a significant decrease in the incidence of dementia
[5, 20]. Thus, for example, in the Rotterdam study,
the results indicate that about 1/4 to 1/3 of dementia
cases could potentially be avoided through optimal
prevention or treatment of cardiovascular risk factors
and improvement of educational level [21].

Prevention data indicate that, in Europe, around
3 million cases of AD could be caused due to
potentially modifiable risk factors. Factors such as
diabetes, hypertension of adulthood, physical inac-
tivity, depression, smoking, and low educational level
have been investigated. Avoiding the risk factors, it
has been estimated that 69.5% of the total dementia
cases (including data on AD and vascular dementia)
are potentially preventable [22].

Sociodemographic risk factors

Depression: In a meta-analysis carried out by
Santabarbara et al., depression was statistically asso-
ciated with AD, with a risk of 54% and a combined
RR (Relative Risk) of 1.54 (95% CI: 1.05-2.24). The
study concludes that 10.8% of AD cases could be
attributed to depression. Currently, depression affects
more than 300 million people in the world (with a
higher prevalence in women than men), and, in addi-
tion to being considered an important risk factor for
AD, it generates a high cost both economically and
socially [23, 24].

Cognitive reserve: Itis considered that an adequate
cognitive reserve (analyzed from variables such as
education, job occupation, and both cognitive and
social activities) is an important protection factor in
AD. It is associated with a dementia risk reduction
between 23-39% [25]. In a meta-analysis carried
out by Meng et al., they concluded that the risk of
developing dementia was 2.61-fold higher (95% CI:
2.21-3.07) in those who had a lower educational level
in relation to those with a high educational level.
On the other hand, when the diagnosis of AD was
produced, it was reported in 70% of the analyzed
studies, that higher education leads to a faster cog-
nitive decline in relation to the level of basic studies
or without studies [26].

Lifestyle:

e Tobacco: Cataldo et al. demonstrated a sig-
nificant increase in AD development among
smokers with a RR of 1.45 (95% CI: 1.16-1.80)
[27]. Tobacco, in addition to causing damage at
the biochemical level, has been shown to modify
the brain structure since it alters the structural
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integrity of the gray matter in different brain
areas. These structural alterations can affect var-
ious neurocognitive domains such as attention,
executive skills, learning or memory [28, 29].

e Physical activity: Physical activity can be con-
sidered a protection factor in AD. In a meta-
analysis carried out by Guure et al., they con-
cluded an OR (Odds Ratio) of 0.62 (95%
CI: 0.49-0.75) [30]. Moderate exercise (3,000
MET-minutes/week or 3 weekly sessions of
vigorous physical activity up to 1,500 MET-
minutes/week) increases AP4y levels (which
means that less APy is deposited in the neu-
rons, and therefore fewer A3 plaques), decreases
the fraction of both total Tau (7-Tau) and phos-
phorylated Tau (P-Tau) and improves cognitive
performance [31, 32].

Cardiovascular risk factors

Hypertension: Having hypertension (high blood
pressure, HBP) during adulthood (not related to the
HBP of onset in old age) has been associated with
an increased risk of developing AD by 50% in old
age. Besides, the adequate treatment of HBP has been
related to the reduction of the risk of development of
AD. The calculated OR was 1.61 (95% CI: 1.16-2.24)
[33, 34].

Diabetes: Diabetes is one of the major pathologies
that are arising in the 21st century (especially Type 2
diabetes that is associated with obesity). Type 2 dia-
betes has an estimated prevalence above 70 years of
30.3% (95% CI: 28.0-32.7). The prevalence figure is
double that in other age ranges. It has been estimated
that diabetes has a RR of 1.39 (95% CI: 1.17-1.66)
for the development of AD [35, 36].

Machine learning and Alzheimer’s disease

In recent years, new statistical analysis techniques
have been added, until now meta-analytical strate-
gies, both for etiological research, risk factors, and
for the process of developing new therapies in AD.
Machine learning (ML) is a branch of artificial intel-
ligence that offers methods and techniques that can
assist in diagnostic and prognostic problems for sev-
eral medical applications. ML is generally used for
research in medical data analysis since it enables
the extraction of meaningful patterns from examples,
being potentially useful for computer-aided diagno-
sis and decision support systems [37]. ML requires a
set of training samples which are employed to create
a mathematical model. This model is then validated

and optimized using another set of samples called
validation set. Finally, the validated model is tested
against a new set of samples, which have not been
previously employed neither to train nor to validate
the model. This data partition strategy is employed to
evaluate the performance of the model simulating a
real scenario where the ML algorithm is used in clin-
ical practice. ML-based generative models provide
much more information than specific models, thereby
enabling a simultaneous and detailed assessment of
different risks [38, 39]. Until now, most studies relied
on meta-analytic strategies, but there are no existing
studies where these risk factors are analyzed through
ML techniques including sociodemographic, clinical,
and analytical variables.

Examples of the use of ML to study AD include:
the development of specific medications for AD [38];
prediction of transition from mild cognitive impair-
ment to AD dementia using neuroimaging modalities
[40]; prediction and classification using Apolipo-
protein-E genotype and neuroimaging [41]; classi-
fication of frontotemporal dementia and AD [42];
genetically dissect transcriptomic profiles imputed in
AD (gene-based per tissue) [43]; among others.

Particularly, ML has been employed in several
works related with the analysis of AD clinical vari-
ables. In [44], several ML techniques were evaluated
for AD screening using sociodemographic and clin-
ical data from different screening tests. In [45],
Jammeh et al. also evaluated different ML algorithms
for AD screening using clinical data and diagno-
sis records. Boustani et al. used electronic medical
record data to develop a passive digital signature for
early identification of AD through logistic regression
[46]. In these studies, no variable selection was per-
formed. However, Weakley et al. developed an ML
approach based on variable selection using clinical
data with the goal of reducing the amount of screen-
ing tests required to detect cognitive impairment [47].
In [48], amethodology based on a combination of ML
and semi-parametric survival analysis was employed
to find the most relevant variables for predicting cog-
nitive impairment and dementia. Finally, Johnson
et al. employed a genetic algorithm combined with
logistic regression for the prediction of AD progres-
sion using clinical data [49]. Regarding to the use of a
combination of clinical and analytical data, Fisher et
al. employed an unsupervised ML method based on
the Conditional Restricted Boltzmann Machine for
comprehensive forecasting of AD progression [39].
However, no variable selection was carried out in this
study. As it can be seen, there are several publications
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in which the ML is applied to the diagnosis and evo-
Iution of AD, but there are only a few that introduce
the combination of several variable types (sociode-
mographic, clinical, and analytical) and the use of
genetic algorithms and ML techniques to develop
a processing framework that explore the most rele-
vant variables for an accurate identification of AD.
This study has the aim of demonstrating, as proof-
of-concept, the potential of ML for achieving an
automatic discrimination between controls and sub-
jects with major neurocognitive disorder (MNCD) by
employing the most appropriate variables.

MATERIALS AND METHODS
Farticipants

This research is based on an observational-analy-
tical design. Two research groups were established:
MNCD group (over 65 years of age, having a diag-
nosis of primary MNCD: AD and frontotemporal
dementia) and control group (over 65 years of age,
having no diagnosis of dementia, and a Pfeiffer test
result less than or equal to 2).

The subject selection was based on a stratified
assignment in the following populations: subjects
of outpatient consultations at the Hospital Insular
de Lanzarote (Spain), the Asociacion de Alzheimer
Gran Canaria (Spain), and students of Peritia et
doctrina at the University of Las Palmas de Gran
Canaria (Spain). A strict protocol was followed
between March 15 and October 1, 2019. This proto-
col involved the following steps. First, a presentation
of the objectives and methods of the investigation
was made to the subjects. In case of acceptance, an
informed consent form was signed (in the case of the
MNCD group, it was delivered to a family member
or to the legal guardian). Next, a structured interview
was carried out to gather information (in the case of
the MNCD group, it was performed to a family mem-
ber or to the legal guardian). Finally, the extraction
of blood in a coagulation tube was carried out by a
specialized nurse in both groups. This blood analysis
was not performed in an acute situation (infection,
exacerbation, etc.). The same protocol methodology
was applied in both groups.

The study protocol and consent procedures were
approved by the Comité de Bioética of the Hospital
Universitario de Gran Canaria Doctor Negrin (refer-
ence 2019-054-1).

The sample is made up of 84 subjects, of whom
22 are men (26.2%) and 62 women (73.8%) with a

mean age of 79.8 years (SD 8.48, minimum 65 and
maximum 100 years). The MNCD group consists of
46 subjects with a mean age of 81.2 years (SD 7.28)
and the control group 78.1 years (SD 9.56). The p-
value for this age difference is 0.088 (using a two-
tailed t-test), therefore, they do not show statistically
significant differences (comparable groups).

Collected participant variables

From each participant, three sets of qualitative
and quantitative variables were collected: sociodemo-
graphic (qualitative), clinical (qualitative and quanti-
tative), and analytical variables (quantitative). Table 1
shows the qualitative sociodemographic and clinical
variables collected from the participants and their
respective percentage in each group. Additionally,
the Chi-square test was employed in these variables
to evaluate if the test rejects the null hypothesis that
each variable is independent to the diagnosis at the
5% significance level. Table 2 shows the age and the
quantitative clinical and analytical variables collected
from the participants and their statistics per group. p-
values were obtained to evaluate the null hypothesis
that the control and NMDC groups have equal means.
On one hand, a two-tailed #-test at the 5% signifi-
cance level was computed in the variables where both
control and MNCD groups had normal distributions.
On the other hand, a two-tailed Wilcoxon Rank-Sum
test at the 5% significance level was computed in the
variables where at least one group had a non-normal
distribution. In total, 38 variables (including age and
gender) were collected. In the first column of Table 1
and Table 2, the ratio of subjects with no missing
values for each variable with respect to the total of
subjects is presented using square brackets. The total
number of missing values found in the database is
119. These missing values are randomly distributed
among the different subjects and variables. The per-
centage of distribution within control and MNCD
groups presented in both tables were computed with
respect to the total of subjects in the dataset.

Machine learning classification approach

The main goal of this work is to demonstrate, as a
proof-of-concept, the capabilities of machine learn-
ing algorithms to automatically diagnose MNCD in
a subject using the previously described variables.
In addition, this study will show the potential of
employing the combination of genetic algorithms and
supervised machine learning approaches to identify
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Table 1

Qualitative sociodemographic and clinical variables of participants with MNCD and controls

849

Variable [Subjects with no missing values/ Characteristic MNCD Control p (Chi-square
Total subjects] group group test™)
N % N %o

Sociodemographic

Sex [84/84] Male 13 28.3 9 237 0.635
Female 33 71.7 29 76.3

Marital status [84/84] Single 5 10.9 4 10.5 0.577
Married 15 32.6 10 26.3
Widower/widow 23 50.0 18 47.4
Divorced 3 6.5 6 15.8

Work activity prior to retirement [83/84] Skilled worker 8 17.4 17 44.7 0.023
Unskilled worker 17 37.0 14 36.8
Entrepreneur 1 22 0 0.0
Housewife 19 41.3 7 18.4

Coexistence format [84/84] Spouse 14 30.4 12 31.6 0.002
Alone 2 43 11 28.9
Another relative 23 50.0 15 39.5
Nursing home 7 15.2 0 0.0

Education level [83/84] University 7 15.2 1 2.6 0.100
Media 25 543 20 52.6
Basics 8 17.4 7 18.4
No studies 5 10.9 10 26.3

Previous intellectual activity [82/84] Reading > 10 books/year 15 32.6 18 474 0.032
Between 5-10 books/year 9 19.6 13 342
Reading <5 books/year 20 435 7 18.4

Social relationships [83/84] Good 17 37.0 29 76.3 <0.001
Normal 15 32.6 8 21.1
Nonexistent 13 28.3 1 2.6

Clinical

Psychiatric history [84/84] Depression 21 45.7 4 10.5 0.002
Other background 1 22 1 2.6
No background 24 52.2 33 86.8

Cardiovascular history [84/84] Ischemic heart disease 8 17.4 9 23.7 0.834
Atrial fibrillation 10 21.7 7 18.4
Other background 4 8.7 2 53
No background 24 522 20 52.6

Neurological history [83/84] ICTUS / TIA 9 19.6 2 53 0.189
Headache / migraine 2 43 1 2.6
CET 1 22 0 0.0
Epilepsy 1 22 0 0.0
No background 33 71.7 35 92.1

Kidney history [84/84] CKD 11 239 12 31.6 0.374
Others 0 0.0 1 2.6
No background 35 76.1 25 65.8

Pneumology history [84/84] COPD 2 43 6 15.8 0.054
Other pathologies 2 43 5 13.2
No background 42 91.3 27 71.1

Family history of dementia [83/84] Father mother 19 41.3 5 13.2 0.005
Other family 6 13.0 3 7.9
No background 20 435 30 78.9

Smoking history [84/84] Yes 15 32.6 13 342 0.877
No 31 67.4 25 65.8

Alcoholism history [83/84] High 3 6.5 1 2.6 0.212
Moderate 4 8.7 5 13.2
Mild 19 413 23 60.5
No background 19 413 9 23.7

HTA history [84/84] Yes 25 54.3 5 132 <0.001
No 21 45.7 33 86.8

Diabetes history [84/84] Yes 18 39.1 3 7.9 <0.001
No 28 60.9 35 92.1

COPD, chronic obstructive pulmonary disease; CKD, chronic kidney disease; ICTUS/TIA, stroke/transient ischemic accident; CET, cran-
ioencephalic trauma; HTN, hypertension. *The Chi-square test was employed to evaluate if the test rejects the null hypothesis that each
variable is independent to the diagnosis at the 5% significance level.



850

Table 2
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Clinical and analytical quantitative variables of participants with MNCD and controls

Variable [Total without missing values/Total] MNCD group Control group p (t-test*/Wilcoxon Rank-Sum test)
Mean SD Mean SD
Age [84/84] 81.28 7.28 78.11 9.56 0.088*
Clinical
SBP (mm Hg) [83/84] 124.60 13.39 123.11 15.03 0.4221
DBP (mm Hg) [83/84] 70.27 10.40 68.11 10.16 0.349"
Pfeiffer Test! [84/84] 7.54 2.80 0.29 0.69 <0.0017
Barthel Scale? [84/84] 59.24 30.80 85.92 25.54 <0.001
Analytical
Hemoglobin ( g/dL) [79/84] 12.48 1.69 13.27 2.08 0.066*
Average Corpuscular Volume (fL) [79/84] 91.40 4.69 90.88 3.89 0.745"
Corpuscular Hemoglobin Media (pg) [79/84] 30.21 1.95 30.04 1.72 0.681*
Platelets (10 L) [80/84] 244.40 70.37 225.66 65.28 0.2581
Leukocytes (10° L) [80/84] 6.97 1.88 6.60 1.85 0.372*
Neutrophils (10° L) [80/84] 4.27 1.61 3.79 1.46 0.174f
Lymphocytes (10> wL) [80/84] 1.87 0.77 1.95 0.82 0.674*
Monocytes (10> wL) [80/84] 0.57 0.21 0.65 0.34 0.305"
Glucose (mg/dL) [81/84] 114.93 31.99 104.24 23.88 0.101f
Creatinine (mg/dL) [78/84] 0.94 0.28 1.03 0.43 0.398f
Glomerular Filtering (CKD-EPI) (mL/min) [72/84]  67.55 18.44 61.89 21.82 0.238*
Sodium (mEq/L) [77/84] 141.39 3.04 141.22 4.03 0.986"
Potassium ( mEq/L) [77/84] 5.50 6.50 4.50 0.45 0.612f
Alanine Aminotransferase (IU/L) [76/84] 19.99 29.38 16.34 7.97 0.4861
Cholesterol (total) (mg/dL) [72/84] 169.97 37.50 183.61 43.40 0.158*
LDL cholesterol ( mg/dL) [64/84] 99.18 34.47 96.70 38.87 0.788*

SBP, systolic blood pressure (in mm Hg); DBP, diastolic blood pressure (in mm HG); SD, standard deviation Ipfeiffer Test or Short Portable
Mental State Questionnaire: short screening questionnaire made up of ten questions that measures the degree of cognitive impairment: areas
evaluated are short and long-term memory, information on everyday events, calculation skills, and orientation. 2Barthel Scale: instrument
used for the functional assessment of a patient. Score from 0 to 100, with 100 being independence and 0 dependence for basic activities
of daily living in the following areas: feeding; bathing, grooming, dressing, bowel control, bladder control, toilet use, transfer, mobility on
level surfaces and stairs. *The two-tailed #-test at the 5% significance level was computed in the variables where both control and MNCD
groups had normal distributions. The two-tailed Wilcoxon Rank-Sum test at the 5% significance level was computed in the variables where

at least one group had a non-normal distribution.

the most relevant variables that offer the best classi-
fication results.

For the experiments, all the variables collected
from the participants were employed, except the
Pfeiffer Test result, since this variable was employed
to select the participants of the control group. There-
fore, 37 variables were included in the study.

Figure 1 shows the block diagram of the data pro-
cessing framework developed for this work. This
framework is based on two main stages: data pre-
processing and supervised machine learning analysis,
and variable selection.

Data pre-processing

The data pre-processing approach is based on two
main steps as presented in Fig. 1A: missing values
replacement and data normalization. First, the vari-
able database is divided in four independent datasets:
Training Set (60%; N =51), Validation Set 1 (10%;

N=8), Validation Set 2 (10%; N=28), and Test Set
(20%; N =17). The validation set is divided in two
sets with the goal of employing the first set to find
the optimal variables for data classification and then,
employing the second set for the performance evalua-
tion of the different types of classification algorithms.
Since the collected database is not large enough, the
data partition was randomly repeated 10 times, allow-
ing to obtain more robust results with the proposed
processing framework. An additional advantage of
this repeated data partition strategy is to avoid bias
due to the missing values in data. The results obtained
with different repetitions can help to avoid the bias of
such missing values, since each repetition will have
different missing samples during training, validation,
and testing.

In the first step, the missing values replacement is
performed using a method based on the k-Nearest-
Neighbor (kNN) algorithm for the imputation of the
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Fig. 1. Block diagram of the data processing framework developed in this study. A) Data pre-preprocessing approach. B) Supervised machine

learning analysis and variable selection.

missing data [50]. Initially, this process is performed
in the Training Set, since data to train the model
should not have missing values. After this, the impu-
tation is applied independently to each instance of the
validation and test sets using the complete Training
Set for computing the missing values, i.e., only the
Training Set is used in the search space for data impu-
tation. This method simulates a real scenario where
data from a new patient are obtained, but some of the
data variables are missing. Therefore, these values

are inferred using data from previous patients avail-
able in the database, i.e., the Training Set. This data
imputation would not bias the classification results
since the labels are not considered in the data imputa-
tion. The proposed strategy to impute data from both
validation and test sets is intended to avoid possible
data leak, since no information outside the Training
Set is used either to train the model, or for imputation.
The same argument is applied to the next step where
the z-score normalization is performed.
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In the second step, the numerical variables of
the Training Set are normalized using the z-score
method [51]. This method is based on the relation-
ship between the mean and the standard deviation
of the values presented in a dataset. As in the kNN
imputation, each instance of the validation and test
sets was normalized independently, using the mean
and the standard deviation from the Training Set.
In this step, for certain classifiers employed in the
supervised machine learning analysis, the categorical
values were transformed to dummy variables [52].
This technique makes use of the one-hot encoding
where each category is represented by binary values.
In this process, only a single value can be 1, while the
others are set to 0, indicating the absence or presence
of a specific categorical value within a variable.

Supervised machine learning analysis and
variable selection

The proposed ML framework to determine the
more suitable variables for an automatic discrimi-
nation between the NMCD and control groups was
based on a combination of supervised ML and genetic
algorithms.

The six supervised classifiers employed to per-
form the experiments were: Support Vector Machines
(SVMs), Random Forest (RF), Artificial Neural Net-
works (ANNs), AdaBoost Ensemble Classifier (AB),
Linear Discriminant Analysis (LDA), and Logistic
Regression (LR). The SVM classifier was config-
ured with the linear kernel and the cost parameter
equal to 1. The RF classifier was set with 500 trees.
The AB classifier was configured with the decision
tree ensemble and 100 ensemble learning cycles. The
ANN was configured with 10 hidden layers, 500
epochs and the scaled conjugate gradient backprop-
agation as optimizer for training. In the case of the
LDA classifier, the discriminant type selected was
pseudolinear, which means that all classes have the
same covariance matrix. Finally, a binomial distri-
bution was selected in the LR classification. These
classifiers were selected because they are some of
the more commonly employed in the literature for
machine learning data classification in medical appli-
cations [53].

The variable selection process was performed
using the Genetic Algorithm (GA) [54]. The GA is
an optimization algorithm that mimics the process
of natural selection, finding an optimal solution to
a problem. In this case, the GA was employed to
identify which variables provide the most relevant
information to discriminate between the NMCD and

control groups. The specific parameters employed in
the GA are as follows: a population size of 200; a
number of generations equal to the number of vari-
ables multiplied by 100 (37 % 100) with a stop criteria
of 50 generations if the result does not change; a
binary population type, which indicates whether the
variable is relevant or not; a crossover function, where
the scattered type was selected; and the gaussian
method for the mutation function.

As presented in Fig. 1B, the Training Set and the
Validation Set 1 were employed to perform the itera-
tive GA methodology. In this process, the classifiers
were trained using the Training Set composed by the
initial variables selected by the GA. Then, the classi-
fication models generated were employed to classify
the Validation Set 1, computing the loss of the pre-
diction based on the AUC metric (Loss=1 - AUC).
This process is repeated until finding the minimum
loss value, which will represent the best classifi-
cation models. Moreover, the complete procedure
is repeated 10 times with 10 different randomized
database partitions to enhance the significance of
the results. After this process, each classification
model can select different relevant variables in each
iteration. The criterion to select the most relevant
variables with the proposed methodology is based
on the variables which obtained an average repe-
tition value higher than 5 among the six different
classification algorithms and the 10 randomized data
partitions.

Once the optimal variables were identified, the
optimal classification models were generated using
the Training Set and the Validation Set 2 was classi-
fied to evaluate the performance of the classifiers and
the results were averaged due to the 10 dataset par-
titions. At this point, the classification models were
generated and evaluated employing all the selected
variables and employing the selected variables for
each variable set (Sociodemographic set, Clinical set,
and Analytical set).

Finally, the best classifiers and the best variable sets
were selected to perform the classification on the Test
Set. In this process the results were obtained, which
were also averaged from the 10 dataset partitions.

For comparison purposes, the same classifiers were
trained using the Training Set composed by the 37
variables (V=37) and also employing the three vari-
able subsets independently (Sociodemographic set;
V=38, Clinical set; V=14, and Analytical set; V=16).
The Validation Set 1 was classified with the models
generated to compare the results with the variable
selection approach.
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Complete set Sociodemographic set Clinical set Analytical set
(V=37) (V=238) (V=14) (V=16)
ESVM| 0.71 0.68 0.75 0.73 0.66 0.68 0.65 0.70 0.81 0.78 0.85 0.85 0.58 0.55 0.60 0.58
ERF 0.71 0.80 0.63 0.79 0.64 0.70 0.58 0.69 0.80 0.83 0.78 0.86 0.41 0.43 0.40 0.49
OANN| 0.76 0.88 0.65 0.85 0.63 0.65 0.60 0.68 0.59 0.50 0.68 0.61 0.50 0.50 0.50 0.46
OAB 0.74 0.80 0.68 0.86 0.61 0.65 0.58 0.65 0.73 0.85 0.60 0.82 0.56 0.63 0.50 0.54
mLDA | 0.59 0.58 0.60 0.69 0.56 0.63 0.50 0.63 0.78 0.75 0.80 0.83 0.46 0.48 0.45 0.41
ELR 0.56 0.58 0.55 0.59 0.59 0.58 0.60 0.66 0.69 0.78 0.60 0.74 0.61 0.60 0.62 0.60
(A)

Complete set Sociodemographic set Clinical set Analytical set
(V=12) (V=3) (V=4) (V=5)
ESVM| 0.80 0.80 0.80 0.83 0.74 0.73 0.75 0.80 0.76 0.80 0.73 0.84 0.61 0.60 0.63 0.69
ERF 0.78 0.73 0.83 0.83 0.78 0.83 0.73 0.78 0.73 0.78 0.68 0.84 0.54 0.48 0.60 0.53
OANN| 0.78 0.70 0.85 0.81 0.61 0.68 0.55 0.70 0.76 0.70 0.83 0.83 0.45 0.25 0.65 0.46
OAB 0.75 0.75 0.75 0.85 0.75 0.83 0.68 0.75 0.70 0.53 0.88 0.84 0.58 0.65 0.50 0.51
mLDA | 0.75 0.68 0.83 0.88 0.75 0.83 0.68 0.76 0.74 0.65 0.83 0.84 0.44 0.43 0.45 0.46
ELR 0.75 0.70 0.80 0.78 0.75 0.83 0.68 0.76 0.76 0.85 0.68 0.88 0.45 0.43 0.48 0.44
(B)

Fig. 2. Classification results obtained in the Validation Set 2. A) Reference results using all the variables available in each variable set. B)
Results obtained after the selection of the most relevant variables in each variable set.

RESULTS

Overall accuracy (ACC), sensitivity, and speci-
ficity metrics were employed to evaluate the classifi-
cation performance. In addition, the receiver oper-
ating characteristic (ROC) curve was employed to
find the most relevant variables for the classifica-
tion using the supervised classifiers, obtaining the
best performance using the AUC (Area Under the
Curve) metric. AUC was also employed to compare
the results among the different approaches.

Statistical analyses were performed to evaluate the
results obtained in the experiments. For the statisti-
cal comparison between the different pair of variable

sets (conformed by the results of the 10 random par-
titions of the 6 classifiers), we used one-sided #-test
statistics. With the goal of providing a more intuitive
interpretation of the statistical analysis, for each pair
of variable sets, e.g., A and B, we performed a right-
sided #-test to verify the superiority of A with respect
to B. Additionally, we used a left-sided #-test to verify
the superiority of B with respect to A.

Validation results

Reference classification results
Figure 2A shows the reference results obtained in
the classification of the Validation Set 2 using all the
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Table 3
p-values obtained after testing the two population means of the different reference sets of the Validation Set 2 in a right-tailed and left-tailed
t-test evaluation performed at the 5% significance level

Variable set

p (Right-tailed #-test)

p (Left-tailed r-test)

ACC Sens. Spec. AUC ACC Sens. Spec. AUC
Complete versus Sociodemographic 0.110 <0.001 0.933 0.042 0.890 0.999 0.067 0.958
Complete versus Clinical 0.853 0.860 0.664 0.932 0.147 0.140 0.336 0.068
Complete versus Analytical 0.017 <0.001 0.916 0.003 0.983 1.000 0.084 0.997
Sociodemographic versus Clinical 0.995 1.000 0.128 1.000 0.005 <0.001 0.872 <0.001
Sociodemographic versus Analytical 0.123 0.093 0.435 0.089 0.877 0.907 0.565 0911
Clinical versus Analytical <0.001 <0.001 0.843 <0.001 1.000 1.000 0.157 1.000

variables available in the database. The complete set
(V=37) and the other three variable sets were clas-
sified using the six proposed classifiers. The ACC,
sensitivity, specificity, and AUC metrics were com-
puted. As it can be observed, the best ACC (81%)
was achieved with the SVM classifier using the Clin-
ical set (V=14), offering the best specificity (85%)
and sensitivity and AUC values of 78% and 0.85,
respectively. However, the best sensitivity (88%) was
obtained with the ANN classifier using the Com-
plete set, but the specificity decreased to 65%, having
an ACC of 76% and an AUC of 0.85. Finally, the
best trade-off between specificity and sensitivity was
obtained by the SVM and RF configurations using
the Clinical set.

A statistical analysis has been performed to evalu-
ate the obtained results among the different variable
sets and evaluation metrics. Table 3 shows the results
of the right-tailed and left-tailed t-test assessment,
performed at 5% significance level, to evaluate the
alternative hypothesis that the population mean of
the first set is greater or lower, respectively, than
the population mean of the second set. To com-
pute the p-value, the results of the 10 random
partitions of the 6 classifiers were considered. It
is worth noticing that the mean sensitivity of the
Complete set is higher than the means of the Sociode-
mographic and the Analytical sets, being highly
statistically significant. Additionally, the mean ACC,
sensitivity, and AUC of the clinical set are higher
than the results of the Analytical set, being also
highly statistically significant. On the other hand,
the mean ACC, sensitivity, and AUC of the Clin-
ical set are higher than the results obtained in
the Sociodemographic set, being statistically signif-
icant the ACC and highly statistically significant
the sensitivity and ACC results. No significant dif-
ferences were found between the Complete and
Clinical sets.

Optimal variable classification results

This section presents the classification results
obtained in the Validation Set 2 using the most rel-
evant variables identified with the GA algorithm
using the Validation Set 1. Figure 3 shows the box-
plot results of the variable selection process where
each boxplot represents the number of repetitions of
such variable among the 10 random partitions of the
database and the six different classifiers employed
in the experiments. The most relevant variables were
selected if their average repetition value (center cross
in the boxplot) were higher than 5. Table 4 shows
the average repetition value for each variable and
the p-value obtained after performing a right-tailed
Wilcoxon Rank-Sum test at 5% of significance level
to evaluate the alternative hypothesis that the popula-
tion median of each variable is higher than the popula-
tion median of the average of the remaining variables.
The Wilcoxon Rank-Sum test was computed due to
at least one group presented a non-normal distribu-
tion. Bold values in the “Average Repetition Value”
column indicate the most relevant variables selected
by the proposed methodology. The statistical analysis
shows that the population median value of the “Coex-
istence format”, “Social relationships”, “Average
Corpuscular Volume”, and “Lymphocytes” variables
are statistically significantly higher than their respec-
tive population median of the remaining variables.
These results were computed considering the aver-
age repetition values obtained from the 10 random
partitions of the six different classifiers. Additionally,
it has been found that there is no statistically signifi-
cant difference between the variable selection process
carried out with the different classifiers and the GA.

Figure 2B shows the classification results using
the selected variables that were computed with each
proposed classifier for the Complete set (V=12) and
also for each independent variable set (Sociodemo-
graphic set; V=3, Clinical set; V=4, and Analytical



F.J. Balea-Fernandez et al. / Dementia Risk Factors and Machine Learning 855

I sex [ Marital status
[ Coexistence format [ Education level

M Social relationships

=

O Work activity prior to retirement

[ Previous intellectual activity

#Repetitions among
partitions and classifiers

ORr NWHUON®OO

[l Psychiatric history [ cardiovascular history
B Family history of dementia [l Smoking history

B 1A M 17D

@ Neurological history
[ Alcoholism history
[ Diabetes history

[ Kidney history
[ HTA history [ Age

[E Pneumology history

[ Barthel Scale

=

#Repetitions among
partitions and classifiers

ol oXo fo—

ORr NWHUVON®OO

(B)

B Hemoglobin [ Average Corpuscular Volume [0 Corpuscular Hemoglobin Media [ Platelets

[ Leukocytes [ Neutrophils B Lymphocytes [ Monocytes

H Glucose [l Creatinine [l Glomerular Filtering [ Sodium

[ Potassium [ Alanine Aminc f [ chol

[ LDL cholesterol

=

#Repetitions among
partitions and classifiers

ORNWAULON®®OO

Fig. 3. Boxplots of the number of repetitions of each variable among the partitions and type of classifiers for each variable set. A) Sociode-
mographic set. B) Clinical set. C) Analytical set. The box boundaries represent the IQR (interquartile range) of the results. Central bars and
error bars depict median and minimum/maximum values of repetitions, respectively. The cross represents the average repetition value. The

small dots outside the minimum/maximum values represent the outliers.

set; V=>5).In general, the results revealed an improve-
ment of the classification when using the selected
variables with respect to the reference results, espe-
cially in the AUC metric. The most balanced results
were obtained with the SVM approach using the
Complete set achieving 80% of ACC, sensitivity
and specificity, and an AUC of 83%. This con-
figuration achieved the best ACC. However, the
best sensitivity (83%) was obtained with several
classifiers (RF, AB, LDA, and LR) using the Sociode-
mographic set. The best specificity (88%) was
obtained with the AB classifier using the Clini-
cal set. Respect to the AUC value, the highest
results (0.88) were obtained with the LDA and LR

classifiers using the Complete and Clinical sets,
respectively.

The statistical analysis of these results reveals
(Table 5) that the Complete set (V=12), which
involves relevant variables from the three different
sets, is the most relevant set for performing the classi-
fication based on the optimal variables selected using
the proposed methodology in the Validation Set 2.
According to these results, the Analytical set is the
worst one. The population mean is always lower than
the population mean of the other three sets, being
highly statistically significant in almost all cases for
the four metrics. The Sociodemographic set performs
better in the sensitivity metric than the Clinical set.
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Table 4
Average repetition values (among the ten partitions and six classi-
fiers) for the identification of the most relevant variables using the
proposed methodology for NMCD identification. Variables with
average repetition values higher than 5 where selected as most rel-
evant (bold numbers in the Average Repetition Value column). Last
column indicates the result of the right-tailed Wilcoxon Rank-Sum
test performed at the 5% significance level to evaluate the alter-
native hypothesis that the population median of each variable is
higher than the population median of the average of the remaining
variables. The Wilcoxon Rank-Sum test was computed due to at
least one group had a non-normal distribution. (*) Indicates the
variables which were identified as statistically significant in the
analysis performed in Tables 1 and 2, where the variables were
compared with the diagnostic outcome

Variable Average Selected
Repetition Variables p
Value (Right-tailed
Wilcoxon
Rank-Sum test)
Sociodemographic
Age 4.7 0.746
Sex 4.5 0.636
Marital status 3.7 0.643
Work activity prior to retirement* 4.0 0911
Coexistence format* 6.8 0.003
Education level 53 0.108
Previous intellectual activity* 42 0.979
Social relationships* 6.0 0.026
Clinical
Psychiatric history* 3.8 0.992
Cardiovascular history 43 0.839
Neurological history 5.0 0.195
Kidney history 4.5 0.634
Pneumology history 4.3 0.739
Family history of dementia 5.8 0.108
Smoking history 2.7 0.994
Alcoholism history 35 0.911
HTA history* 6.0 0.186
SBP 4.5 0.856
DBP 4.8 0.278
Diabetes history* 5.7 0.064
Barthel Scale* 6.0 0.115
Analytical
Hemoglobin 52 0.397
Average Corpuscular Volume 6.2 0.050
Corpuscular Hemoglobin Media 4.8 0.408
Platelets 4.7 0.846
Leukocytes 3.8 0.904
Neutrophils 5.2 0.633
Lymphocytes 6.0 0.027
Monocytes 5.0 0.392
Glucose 4.5 0.634
Creatinine 4.0 0.905
Glomerular Filtering (CKD-EPI) 5.0 0.108
Sodium 42 0.639
Potassium 4.8 0.630
Alanine Aminotransferase 5.5 0.113
Cholesterol (total) 5.0 0.397
LDL cholesterol 4.5 0.509

However, the specificity and AUC of the Clinical
set are higher than the Sociodemographic set. As in
Table 3, these results were computed from 10 random
partitions of the 6 classifiers.

Finally, Table 6 presents the statistical analysis
of the comparison between using the reference sets,
which include all the variables, and the optimal sets,
which include the most relevant variables selected
with the proposed methodology. These results
demonstrate that the Complete, Sociodemographic
and Clinical optimal sets outperform their respective
reference sets, achieving in most of the metrics higher
and highly statistically significant results.

Test results

The Test Set was evaluated using the most rele-
vant configurations obtained in the validation results.
These configurations involved the use of the Com-
plete and Clinical variable sets optimized using the
GA methodology to evaluate their performance in the
Test Set. A statistical analysis was performed using
a right-tailed 7-test to compare the population means
of both sets (Complete and Clinical). Furthermore,
an additional statistical analysis was performed over
each evaluation metric in order to establish a com-
parative of performance of the different classifiers
using a right-tailed #-test for each variable set. Fig-
ure 4 shows the classification results of the Test Set,
where it is possible to observe that the RF classifier
using the Complete set achieved the best sensitivity
result of 100%, identifying correctly all the subjects
with NMDC in the Test Set. This result is highly sta-
tistically significant respect to the other classifiers in
the Complete set (p <0.001). Furthermore, RF and
LDA provided the best AUC results (0.97) using the
Clinical set. These results are statistically significant
with respect to the SVM, ANN, ADA, and LR results
in the Clinical set (p <0.002). The detailed results
of this analysis are presented in the Supplementary
Table 1. Finally, the statistical analysis of the results
obtained after comparing the two population means of
the Complete and Clinical sets using the six classifiers
(Table 7) reveals that the Complete set performs better
than the Clinical set in terms of ACC (p=0.012) and
sensitivity (p <0.001). However, no significant differ-
ences were found in the specificity and AUC metrics.

DISCUSSION

The progressive increase in life expectancy has
economic, social, and health consequences. Recent
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Table 5
p-values obtained after testing the two population means of the different optimal sets of the Validation Set 2 in a right-tailed and left-tailed
t-test evaluation performed at the 5% significance level

Variable set pair (setl versus set2) p (Right-tailed r-test) p (Left-tailed #-test)

ACC Sens. Spec. AUC ACC Sens. Spec. AUC
Complete-GA versus Sociodemographic-GA 0.057 0.723 <0.001 0.014 0.943 0.277 0.999 0.986
Complete-GA versus Clinical-GA 0.146 0.040 0.694 0.447 0.854 0.960 0.306 0.553
Complete-GA versus Analytical-GA <0.001 <0.001 <0.001 <0.001 1.000 1.000 1.000 1.000
Sociodemographic-GA versus Clinical-GA 0.750 0.012 1.000 0.979 0.250 0.988 <0.001 0.021
Sociodemographic-GA versus Analytical-GA <0.001 <0.001 0.003 <0.001 1.000 1.000 0.997 1.000
Clinical-GA versus Analytical-GA <0.001 <0.001 <0.001 <0.001 1.000 1.000 1.000 1.000

Table 6

p-values obtained after testing the two population means of the reference and optimal sets of the Validation Set 2 in a right-tailed and
left-tailed #-test evaluation performed at the 5% significance level. GA indicates that the set belongs to the optimal set

Variable set pair (setl versus set2) p (Right-tailed r-test) p (Left-tailed r-test)

ACC Sens. Spec. AUC ACC Sens. Spec. AUC
Complete versus Complete-GA 1.000  0.940  1.000 1.000 <0.001 0.060 <0.001 <0.001
Sociodemographic versus Sociodemographic-GA 1.000 1.000  0.777 1.000 <0.001 <0.001 0.223 <0.001
Clinical versus Clinical-GA 0.997  0.108 1.000 0.986 0.003 0.892 <0.001 0.014
Analytical versus Analytical-GA 0.048 0466  0.027 0.041 0.952 0.534 0.973 0.959

Complete set Clinical set
(V=12) (V=4)
mSVM 0.83 0.86 0.79 0.90 0.78 0.80 0.76 0.86
ERF 0.88 1.00 0.71 0.92 0.81 0.89 0.71 0.97
OANN 0.77 0.72 0.83 0.86 0.74 0.67 0.83 0.78
OAB 0.81 0.78 0.86 0.84 0.63 0.44 0.86 0.86
ELDA 0.85 0.80 0.91 0.94 0.89 0.81 1.00 0.97
ELR 0.78 0.82 0.73 0.85 0.83 0.84 0.80 0.91

Fig. 4. Classification results obtained in the Test Set using the most relevant variables in the complete and clinical variable sets.

Table 7
p-values obtained after testing the two population means of the Complete and Clinical sets of the Test Set in a right-tailed and left-tailed
t-test evaluation performed at the 5% significance level. GA indicates that the set belongs to the optimal set

Variable set pair (setl versus set2) p (Right-tailed #-test) p (Left-tailed r-test)
ACC Sens. Spec. AUC ACC Sens. Spec. AUC
Complete-GA versus Clinical-GA 0.012 <0.001 0.790 0.646 0.988 0.999 0.210 0.354
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data reveal an increasing trend in the number of
patients with MNCD, predicting an increase of 87%
in the European region in the period 2010-2050 [5].
Health and social costs in aging represent more than
50% of total expenditures today. Of this expenditure,
more than 10% is dedicated to neurocognitive dis-
orders (with a significant impact on both the family
and the society in direct and indirect costs). A signifi-
cantincrease is expected both in the number of people
over 70 years of age with a consequent increase in the
incidence and prevalence of MNCD and, the conse-
quent increase in the costs of treating MNCD. Among
others, this is an important reason for the application
of an efficient diagnostic tool and etiological search
(with the consequent effective treatment). Specifi-
cally, the most common dementia is AD, and there
has been an evolution in relation to the diagnostic
criteria in the last decades. As AD is a polygenic and
multifactorial disease with complex origins, there is
not an single etiology to study and treat [14-20, 38].

The unmodifiable and established risk factors for
AD are age, sex, and genetic factors, being age the
main one. On the other hand, modifiable risk fac-
tors related to healthy lifestyles or educational levels
have been identified and their optimization can lead
to a significant decrease in the incidence of dementia
[5, 20]. Both for diagnosis and to establish an ade-
quate etiology, this research is based on the study
of modifiable risk factors through machine learning
algorithms. The main goal is to demonstrate, as a
proof-of-concept, the capabilities of machine learn-
ing algorithms to automatically diagnose MNCD in
a subject using the previously described variables.

Three sets of variables have been collected to be
analyzed by blocks using the specific techniques of
machine learning: sociodemographic, clinical, and
analytical variables. These variables (detailed in
Tables 1 and 2) separately have been shown as risk
factors for the development of MNCD (except analyt-
ical variables not previously studied as risk factors),
finding RR between 1.16 to 2.24. Using the differ-
ent combinations of machine learning techniques and
optimization algorithms, it has been possible to iden-
tify the most relevant variables for the identification
of MNCD.

This study has revealed that the use of the 37
variables collected in this study (Complete set) and
the use of the 14 variables from clinical data (Clini-
cal set) has no statistically significant differences in
the classification results obtained with the six ML
classifiers over the Validation Set 2. However, par-
ticularly in the sensitivity metric, these two sets are

Table 8
Summary of the most relevant variables identified by the proposed
framework

Variable Set

Sociodemographic

Most Relevant Variable

Coexistence format
Education level

Social relationships
Clinical Family history of dementia
HTA history

Diabetes history

Barthel Scale

Hemoglobin

Average Corpuscular Volume
Neutrophils

Lymphocytes

Alanine Aminotransferase

Analytical

statistically significant (p <0.001) higher than the
results obtained with the other two sets (Sociodemo-
graphic and Analytical). Regarding to the use of the
GA for the identification of the most relevant vari-
ables, Table 8 shows the summary of the selected
variables from each variable set using the proposed
framework, which results are presented in Table 4.
In this study, we have demonstrated that the classi-
fication results of the Validation Set 2 are improved
when using the optimal sets, which include only the
most relevant variables. This result was found highly
statistically significant in most cases, except for the
comparison between the Analytical sets (see Table 6).
Finally, the Test Set was evaluated using the most
relevant configurations (Complete and Clinical sets
with the most relevant variables), revealing that the
RF classifier using the Complete set offered the best
sensitivity result (100%, p < 0.001). According to the
results obtained with the proposed methodology, the
most relevant set of variables to identify MNCD is
given by a combination of variables selected from
all types of data, i.e., Sociodemographic, Clinical,
and Analytical. These results support the epigenetic
theory of the MNCD, that is, the influence of the
environment on the AD development.

Limitations

The main limitation of this study is found in the
relatively small number of samples which may influ-
ence the outcomes of this study in two folds. On the
one hand, the classification algorithms could gen-
eralize better with a higher sample size. On the
other hand, the limited number of samples may lead
in type-I errors in the statistical hypothesis testing.
Despite this, the proposed methodology, where 10
randomized iterative partitions of the database were
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performed, allows to deal with the problems of hav-
ing a very small database. Hence, these preliminary
results obtained with the framework and the method-
ology herein proposed show a promising line of
research related to the search for the etiology of AD,
demonstrating the influence of the environment on its
development and the potential use of ML and algo-
rithm optimization techniques to evaluate the most
relevant information for an accurate diagnosis.

Another limitation found in our study is related
to the z-score normalization. This method has been
shown to be sensitive to outliers compared to other
normalization approaches [51]. Hence, the presence
of outliers may have influenced our results. The influ-
ence of the normalization technique and also further
analysis regarding the missing data management will
be studied in detail in future works.

Finally, a third limitation is found in the lack of
quantitative comparison of results respect to other
processing approaches existing in the state-of-the-
art using the same dataset. In this sense, it is not
possible to know at this time which of many sim-
ilar methods are actually best, on average and for
each subtype of the many relevant small datasets that
can help accelerate AD research progress. However,
this study presents a relevant comparison through the
results of six different ML supervised classifiers com-
monly used in the literature. Since the comparative
regarding the best classifiers for MNCD identification
have been performed, the most significant differ-
ences with other approaches are based on which
method is used to select the most relevant variables for
the subsequent classifications. In the future, further
comparative with other state-of-art feature selection
methods could lead into more robust conclusions
about which variables are more important for MNCD
identification using ML techniques.

In contrast to the aforementioned limitations, a
strength of our approach is that it has been provided
successful results with a very small clinical dataset.
The methodology presented in this work can be used
for many other AD investigations, including small
clinical trials, even when datasets and subject avail-
ability are limited.

Conclusions and implications

The machine learning techniques have demon-
strated to be a suitable tool for studying risk factors in
AD, being a potential screening tool for MNCD. The
division by blocks (sociodemographic, clinical, and
analytical) shows, with the adjustment of machine

learning techniques, an important increase in the
specificity and sensitivity in the differences between
the control and MNCD groups. Moreover, this study
has revealed the importance of the inclusion of ana-
lytical data as risk factors for the development of
MNCD.
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