Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/77156
Título: TOPSIS decision on approximate pareto fronts by using evolutionary algorithms: Application to an engineering design problem
Autores/as: Méndez Babey, Máximo 
Frutos, Mariano
Miguel, Fabio
Aguasca Colomo, Ricardo 
Clasificación UNESCO: 3307 Tecnología electrónica
120304 Inteligencia artificial
Palabras clave: Multi-Objective Evolutionary Algorithms
Multiple Criteria Decision-Making
Optimization
Preferences
TOPSIS, et al.
Fecha de publicación: 2020
Publicación seriada: Mathematics 
Resumen: A common technique used to solve multi-objective optimization problems consists of first generating the set of all Pareto-optimal solutions and then ranking and/or choosing the most interesting solution for a human decision maker (DM). Sometimes this technique is referred to as generate first–choose later. In this context, this paper proposes a two-stage methodology: a first stage using a multi-objective evolutionary algorithm (MOEA) to generate an approximate Pareto-optimal front of non-dominated solutions and a second stage, which uses the Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS) devoted to rank the potential solutions to be proposed to the DM. The novelty of this paper lies in the fact that it is not necessary to know the ideal and nadir solutions of the problem in the TOPSIS method in order to determine the ranking of solutions. To show the utility of the proposed methodology, several original experiments and comparisons between different recognized MOEAs were carried out on a welded beam engineering design benchmark problem. The problem was solved with two and three objectives and it is characterized by a lack of knowledge about ideal and nadir values.
URI: http://hdl.handle.net/10553/77156
ISSN: 2227-7390
DOI: 10.3390/math8112072
Fuente: Mathematics [EISSN 2227-7390], v. 8 (11), 2072, (Noviembre 2020)
Colección:Artículos
miniatura
pdf
Adobe PDF (1,75 MB)
Vista completa

Citas SCOPUSTM   

18
actualizado el 15-dic-2024

Citas de WEB OF SCIENCETM
Citations

17
actualizado el 15-dic-2024

Visitas

166
actualizado el 27-jul-2024

Descargas

158
actualizado el 27-jul-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.