Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/77156
Campo DC Valoridioma
dc.contributor.authorMéndez Babey, Máximoen_US
dc.contributor.authorFrutos, Marianoen_US
dc.contributor.authorMiguel, Fabioen_US
dc.contributor.authorAguasca Colomo, Ricardoen_US
dc.date.accessioned2021-01-14T20:04:38Z-
dc.date.available2021-01-14T20:04:38Z-
dc.date.issued2020en_US
dc.identifier.issn2227-7390en_US
dc.identifier.otherScopus-
dc.identifier.urihttp://hdl.handle.net/10553/77156-
dc.description.abstractA common technique used to solve multi-objective optimization problems consists of first generating the set of all Pareto-optimal solutions and then ranking and/or choosing the most interesting solution for a human decision maker (DM). Sometimes this technique is referred to as generate first–choose later. In this context, this paper proposes a two-stage methodology: a first stage using a multi-objective evolutionary algorithm (MOEA) to generate an approximate Pareto-optimal front of non-dominated solutions and a second stage, which uses the Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS) devoted to rank the potential solutions to be proposed to the DM. The novelty of this paper lies in the fact that it is not necessary to know the ideal and nadir solutions of the problem in the TOPSIS method in order to determine the ranking of solutions. To show the utility of the proposed methodology, several original experiments and comparisons between different recognized MOEAs were carried out on a welded beam engineering design benchmark problem. The problem was solved with two and three objectives and it is characterized by a lack of knowledge about ideal and nadir values.en_US
dc.languageengen_US
dc.relation.ispartofMathematicsen_US
dc.sourceMathematics [EISSN 2227-7390], v. 8 (11), 2072, (Noviembre 2020)en_US
dc.subject3307 Tecnología electrónicaen_US
dc.subject120304 Inteligencia artificialen_US
dc.subject.otherMulti-Objective Evolutionary Algorithms-
dc.subject.otherMultiple Criteria Decision-Making-
dc.subject.otherOptimization-
dc.subject.otherPreferences-
dc.subject.otherTOPSIS-
dc.subject.otherEngineering design-
dc.titleTOPSIS decision on approximate pareto fronts by using evolutionary algorithms: Application to an engineering design problemen_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticleen_US
dc.identifier.doi10.3390/math8112072en_US
dc.identifier.scopus85096467362-
dc.contributor.authorscopusid23474473600-
dc.contributor.authorscopusid24482935700-
dc.contributor.authorscopusid57023610800-
dc.contributor.authorscopusid55308143300-
dc.identifier.eissn2227-7390-
dc.description.lastpage27en_US
dc.identifier.issue11-
dc.description.firstpage1en_US
dc.relation.volume8en_US
dc.investigacionIngeniería y Arquitectura-
dc.type2Artículoen_US
dc.utils.revision-
dc.date.coverdateNoviembre 2020en_US
dc.identifier.ulpgc-
dc.contributor.buulpgcBU-INFen_US
dc.description.sjr0,495
dc.description.jcr2,258
dc.description.sjrqQ2
dc.description.jcrqQ1
dc.description.scieSCIE
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.author.deptGIR SIANI: Computación Evolutiva y Aplicaciones-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.deptGIR SIANI: Computación Evolutiva y Aplicaciones-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.deptDepartamento de Ingeniería Electrónica y Automática-
crisitem.author.orcid0000-0002-7133-7108-
crisitem.author.orcid0000-0003-2217-8005-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.fullNameMéndez Babey, Máximo-
crisitem.author.fullNameAguasca Colomo, Ricardo-
Colección:Artículos
miniatura
pdf
Adobe PDF (1,75 MB)
Vista resumida

Citas SCOPUSTM   

18
actualizado el 10-nov-2024

Citas de WEB OF SCIENCETM
Citations

17
actualizado el 10-nov-2024

Visitas

166
actualizado el 27-jul-2024

Descargas

158
actualizado el 27-jul-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.