Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/76167
Campo DC | Valor | idioma |
---|---|---|
dc.contributor.author | García-Alonso, Carlos R. | en_US |
dc.contributor.author | Salvador-Carulla, Luis | en_US |
dc.contributor.author | Negrín Hernández, Miguel Ángel | en_US |
dc.contributor.author | Moreno-Kuestner, Berta | en_US |
dc.date.accessioned | 2020-12-01T11:17:59Z | - |
dc.date.available | 2020-12-01T11:17:59Z | - |
dc.date.issued | 2010 | en_US |
dc.identifier.issn | 1121-189X | en_US |
dc.identifier.other | WoS | - |
dc.identifier.uri | http://hdl.handle.net/10553/76167 | - |
dc.description.abstract | Aims - This study had two objectives: 1) to design and develop a computer-based tool, called Multi-Objective Evolutionary Algorithm/Hot-Spots (MOEA/HS), to identify and geographically locate highly autocorrelated zones or hot-spots and which merges different methods, and 2) to carry out a demonstration study in a geographical area where previous information about the distribution of schizophrenia prevalence is available and which can therefore be compared. Methods - Local Indicators of Spatial Aggregation (LISA) models as well as the Bayesian Conditional Autoregressive Model (CAR) were used as objectives in a multicriteria framework when highly autocorrelated zones (hot-spots) need to be identified and geographically located. A Multi-Objective Evolutionary Algorithm (MOEA) model was designed and used to identify highly autocorrelated areas of the prevalence of schizophrenia in Andalusia. Hot-spots were statistically identified using exponential-based QQ-Plots (statistics of extremes). Results - Efficient solutions (Pareto set) from MOEA/HS were analysed statistically and one main hot-spot was identified and spatially located. Our model can be used to identify and locate geographical hot-spots of schizophrenia prevalence in a large and complicated region. Conclusions - MOEA/FIS enables a compromise to be achieved between different econometric methods by highlighting very special zones in complex areas where schizophrenia shows a high autocorrelation. | en_US |
dc.language | eng | en_US |
dc.relation.ispartof | Epidemiologia e Psichiatria Sociale | en_US |
dc.source | Epidemiologia e Psichiatria Sociale [ISSN 1121-189X], v. 19 (4), p. 302-313, (Octubre-Diciembre 2010) | en_US |
dc.subject | 3314 Tecnología médica | en_US |
dc.subject.other | Multiobjective Evolutionary Algorithms | en_US |
dc.subject.other | Spatial Analysis | en_US |
dc.subject.other | Schizophrenia | en_US |
dc.subject.other | Health Care | en_US |
dc.title | Development of a new spatial analysis tool in mental health: Identification of highly autocorrelated areas (hot-spots) of schizophrenia using a Multiobjective Evolutionary Algorithm model (MOEA/HS) | en_US |
dc.type | info:eu-repo/semantics/Article | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1017/S1121189X00000646 | en_US |
dc.identifier.pmid | 21322504 | - |
dc.identifier.scopus | 79751474236 | - |
dc.identifier.isi | 000287345800007 | - |
dc.contributor.authorscopusid | 15070557800 | - |
dc.contributor.authorscopusid | 57201763249 | - |
dc.contributor.authorscopusid | 36951887100 | - |
dc.contributor.authorscopusid | 55663805900 | - |
dc.identifier.eissn | 2038-1816 | - |
dc.description.lastpage | 313 | en_US |
dc.identifier.issue | 4 | - |
dc.description.firstpage | 302 | en_US |
dc.relation.volume | 19 | en_US |
dc.investigacion | Ciencias Sociales y Jurídicas | en_US |
dc.type2 | Artículo | en_US |
dc.contributor.daisngid | 581661 | - |
dc.contributor.daisngid | 12281092 | - |
dc.contributor.daisngid | 1285254 | - |
dc.contributor.daisngid | 899732 | - |
dc.description.numberofpages | 12 | en_US |
dc.utils.revision | Sí | en_US |
dc.contributor.wosstandard | WOS:Garcia-Alonso, CR | - |
dc.contributor.wosstandard | WOS:Salvador-Carulla, L | - |
dc.contributor.wosstandard | WOS:Negrin-Hernandez, MA | - |
dc.contributor.wosstandard | WOS:Moreno-Kustner, B | - |
dc.date.coverdate | Octubre 2010 | en_US |
dc.identifier.ulpgc | Sí | en_US |
dc.description.jcr | 2,032 | |
dc.description.jcrq | Q2 | |
item.grantfulltext | none | - |
item.fulltext | Sin texto completo | - |
crisitem.author.dept | GIR TIDES- Técnicas estadísticas bayesianas y de decisión en la economía y empresa | - |
crisitem.author.dept | IU de Turismo y Desarrollo Económico Sostenible | - |
crisitem.author.dept | Departamento de Métodos Cuantitativos en Economía y Gestión | - |
crisitem.author.orcid | 0000-0002-7074-6268 | - |
crisitem.author.parentorg | IU de Turismo y Desarrollo Económico Sostenible | - |
crisitem.author.fullName | Negrín Hernández, Miguel Ángel | - |
Colección: | Artículos |
Citas SCOPUSTM
9
actualizado el 15-dic-2024
Citas de WEB OF SCIENCETM
Citations
9
actualizado el 25-feb-2024
Visitas
155
actualizado el 14-dic-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.