Please use this identifier to cite or link to this item:
http://hdl.handle.net/10553/76167
DC Field | Value | Language |
---|---|---|
dc.contributor.author | García-Alonso, Carlos R. | en_US |
dc.contributor.author | Salvador-Carulla, Luis | en_US |
dc.contributor.author | Negrín Hernández, Miguel Ángel | en_US |
dc.contributor.author | Moreno-Kuestner, Berta | en_US |
dc.date.accessioned | 2020-12-01T11:17:59Z | - |
dc.date.available | 2020-12-01T11:17:59Z | - |
dc.date.issued | 2010 | en_US |
dc.identifier.issn | 1121-189X | en_US |
dc.identifier.other | WoS | - |
dc.identifier.uri | http://hdl.handle.net/10553/76167 | - |
dc.description.abstract | Aims - This study had two objectives: 1) to design and develop a computer-based tool, called Multi-Objective Evolutionary Algorithm/Hot-Spots (MOEA/HS), to identify and geographically locate highly autocorrelated zones or hot-spots and which merges different methods, and 2) to carry out a demonstration study in a geographical area where previous information about the distribution of schizophrenia prevalence is available and which can therefore be compared. Methods - Local Indicators of Spatial Aggregation (LISA) models as well as the Bayesian Conditional Autoregressive Model (CAR) were used as objectives in a multicriteria framework when highly autocorrelated zones (hot-spots) need to be identified and geographically located. A Multi-Objective Evolutionary Algorithm (MOEA) model was designed and used to identify highly autocorrelated areas of the prevalence of schizophrenia in Andalusia. Hot-spots were statistically identified using exponential-based QQ-Plots (statistics of extremes). Results - Efficient solutions (Pareto set) from MOEA/HS were analysed statistically and one main hot-spot was identified and spatially located. Our model can be used to identify and locate geographical hot-spots of schizophrenia prevalence in a large and complicated region. Conclusions - MOEA/FIS enables a compromise to be achieved between different econometric methods by highlighting very special zones in complex areas where schizophrenia shows a high autocorrelation. | en_US |
dc.language | eng | en_US |
dc.relation.ispartof | Epidemiologia e Psichiatria Sociale | en_US |
dc.source | Epidemiologia e Psichiatria Sociale [ISSN 1121-189X], v. 19 (4), p. 302-313, (Octubre-Diciembre 2010) | en_US |
dc.subject | 3314 Tecnología médica | en_US |
dc.subject.other | Multiobjective Evolutionary Algorithms | en_US |
dc.subject.other | Spatial Analysis | en_US |
dc.subject.other | Schizophrenia | en_US |
dc.subject.other | Health Care | en_US |
dc.title | Development of a new spatial analysis tool in mental health: Identification of highly autocorrelated areas (hot-spots) of schizophrenia using a Multiobjective Evolutionary Algorithm model (MOEA/HS) | en_US |
dc.type | info:eu-repo/semantics/Article | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1017/S1121189X00000646 | en_US |
dc.identifier.pmid | 21322504 | - |
dc.identifier.scopus | 79751474236 | - |
dc.identifier.isi | 000287345800007 | - |
dc.contributor.authorscopusid | 15070557800 | - |
dc.contributor.authorscopusid | 57201763249 | - |
dc.contributor.authorscopusid | 36951887100 | - |
dc.contributor.authorscopusid | 55663805900 | - |
dc.identifier.eissn | 2038-1816 | - |
dc.description.lastpage | 313 | en_US |
dc.identifier.issue | 4 | - |
dc.description.firstpage | 302 | en_US |
dc.relation.volume | 19 | en_US |
dc.investigacion | Ciencias Sociales y Jurídicas | en_US |
dc.type2 | Artículo | en_US |
dc.contributor.daisngid | 581661 | - |
dc.contributor.daisngid | 12281092 | - |
dc.contributor.daisngid | 1285254 | - |
dc.contributor.daisngid | 899732 | - |
dc.description.numberofpages | 12 | en_US |
dc.utils.revision | Sí | en_US |
dc.contributor.wosstandard | WOS:Garcia-Alonso, CR | - |
dc.contributor.wosstandard | WOS:Salvador-Carulla, L | - |
dc.contributor.wosstandard | WOS:Negrin-Hernandez, MA | - |
dc.contributor.wosstandard | WOS:Moreno-Kustner, B | - |
dc.date.coverdate | Octubre 2010 | en_US |
dc.identifier.ulpgc | Sí | en_US |
dc.description.jcr | 2,032 | |
dc.description.jcrq | Q2 | |
item.grantfulltext | none | - |
item.fulltext | Sin texto completo | - |
crisitem.author.dept | GIR TIDES- Técnicas estadísticas bayesianas y de decisión en la economía y empresa | - |
crisitem.author.dept | IU de Turismo y Desarrollo Económico Sostenible | - |
crisitem.author.dept | Departamento de Métodos Cuantitativos en Economía y Gestión | - |
crisitem.author.orcid | 0000-0002-7074-6268 | - |
crisitem.author.parentorg | IU de Turismo y Desarrollo Económico Sostenible | - |
crisitem.author.fullName | Negrín Hernández, Miguel Ángel | - |
Appears in Collections: | Artículos |
SCOPUSTM
Citations
9
checked on Dec 15, 2024
WEB OF SCIENCETM
Citations
9
checked on Feb 25, 2024
Page view(s)
155
checked on Dec 14, 2024
Google ScholarTM
Check
Altmetric
Share
Export metadata
Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.