Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/75802
Título: Detection of severe obstructive sleep apnea through voice analysis
Autores/as: Sole-Casals, Jordi
Munteanu, Cristian
Capdevila Martín, Oriol
Barbé, Ferran
Queipo, Carlos
Amilibia, José
Durán-Cantolla, Joaquín
Clasificación UNESCO: 320507 Neurología
320711 Neuropatología
Palabras clave: Obstructive Sleep Apnea
Voice Processing
Genetic Algorithms
Feature Reduction
Fecha de publicación: 2014
Publicación seriada: Applied Soft Computing Journal 
Resumen: This paper deals with the potential and limitations of using voice and speech processing to detect Obstructive Sleep Apnea (OSA). An extensive body of voice features has been extracted from patients who present various degrees of OSA as well as healthy controls. We analyse the utility of a reduced set of features for detecting OSA. We apply various feature selection and reduction schemes (statistical ranking, Genetic Algorithms, PCA, LDA) and compare various classifiers (Bayesian Classifiers, kNN, Support Vector Machines, neural networks, Adaboost). S-fold crossvalidation performed on 248 subjects shows that in the extreme cases (that is, 127 controls and 121 patients with severe OSA) voice alone is able to discriminate quite well between the presence and absence of OSA. However, this is not the case with mild OSA and healthy snoring patients where voice seems to play a secondary role. We found that the best classification schemes are achieved using a Genetic Algorithm for feature selection/reduction.
URI: http://hdl.handle.net/10553/75802
ISSN: 1568-4946
DOI: 10.1016/j.asoc.2014.06.017
Fuente: Applied Soft Computing [ISSN 1568-4946], v. 23, p. 346-354, (Octubre 2014)
Colección:Artículos
Vista completa

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.