Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/75802
Título: | Detection of severe obstructive sleep apnea through voice analysis | Autores/as: | Sole-Casals, Jordi Munteanu, Cristian Capdevila Martín, Oriol Barbé, Ferran Queipo, Carlos Amilibia, José Durán-Cantolla, Joaquín |
Clasificación UNESCO: | 320507 Neurología 320711 Neuropatología |
Palabras clave: | Obstructive Sleep Apnea Voice Processing Genetic Algorithms Feature Reduction |
Fecha de publicación: | 2014 | Publicación seriada: | Applied Soft Computing Journal | Resumen: | This paper deals with the potential and limitations of using voice and speech processing to detect Obstructive Sleep Apnea (OSA). An extensive body of voice features has been extracted from patients who present various degrees of OSA as well as healthy controls. We analyse the utility of a reduced set of features for detecting OSA. We apply various feature selection and reduction schemes (statistical ranking, Genetic Algorithms, PCA, LDA) and compare various classifiers (Bayesian Classifiers, kNN, Support Vector Machines, neural networks, Adaboost). S-fold crossvalidation performed on 248 subjects shows that in the extreme cases (that is, 127 controls and 121 patients with severe OSA) voice alone is able to discriminate quite well between the presence and absence of OSA. However, this is not the case with mild OSA and healthy snoring patients where voice seems to play a secondary role. We found that the best classification schemes are achieved using a Genetic Algorithm for feature selection/reduction. | URI: | http://hdl.handle.net/10553/75802 | ISSN: | 1568-4946 | DOI: | 10.1016/j.asoc.2014.06.017 | Fuente: | Applied Soft Computing [ISSN 1568-4946], v. 23, p. 346-354, (Octubre 2014) |
Colección: | Artículos |
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.