Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/75802
Campo DC Valoridioma
dc.contributor.authorSole-Casals, Jordien_US
dc.contributor.authorMunteanu, Cristianen_US
dc.contributor.authorCapdevila Martín, Oriolen_US
dc.contributor.authorBarbé, Ferranen_US
dc.contributor.authorQueipo, Carlosen_US
dc.contributor.authorAmilibia, Joséen_US
dc.contributor.authorDurán-Cantolla, Joaquínen_US
dc.date.accessioned2020-11-20T22:51:36Z-
dc.date.available2020-11-20T22:51:36Z-
dc.date.issued2014en_US
dc.identifier.issn1568-4946en_US
dc.identifier.otherWoS-
dc.identifier.urihttp://hdl.handle.net/10553/75802-
dc.description.abstractThis paper deals with the potential and limitations of using voice and speech processing to detect Obstructive Sleep Apnea (OSA). An extensive body of voice features has been extracted from patients who present various degrees of OSA as well as healthy controls. We analyse the utility of a reduced set of features for detecting OSA. We apply various feature selection and reduction schemes (statistical ranking, Genetic Algorithms, PCA, LDA) and compare various classifiers (Bayesian Classifiers, kNN, Support Vector Machines, neural networks, Adaboost). S-fold crossvalidation performed on 248 subjects shows that in the extreme cases (that is, 127 controls and 121 patients with severe OSA) voice alone is able to discriminate quite well between the presence and absence of OSA. However, this is not the case with mild OSA and healthy snoring patients where voice seems to play a secondary role. We found that the best classification schemes are achieved using a Genetic Algorithm for feature selection/reduction.en_US
dc.languageengen_US
dc.relation.ispartofApplied Soft Computing Journalen_US
dc.sourceApplied Soft Computing [ISSN 1568-4946], v. 23, p. 346-354, (Octubre 2014)en_US
dc.subject320507 Neurologíaen_US
dc.subject320711 Neuropatologíaen_US
dc.subject.otherObstructive Sleep Apneaen_US
dc.subject.otherVoice Processingen_US
dc.subject.otherGenetic Algorithmsen_US
dc.subject.otherFeature Reductionen_US
dc.titleDetection of severe obstructive sleep apnea through voice analysisen_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.asoc.2014.06.017en_US
dc.identifier.scopus84904551139-
dc.identifier.isi000341680000030-
dc.contributor.authorscopusid14018739300-
dc.contributor.authorscopusid55511749162-
dc.contributor.authorscopusid7102395685-
dc.contributor.authorscopusid7007035883-
dc.contributor.authorscopusid6507634632-
dc.contributor.authorscopusid6505831183-
dc.contributor.authorscopusid57192815740-
dc.identifier.eissn1872-9681-
dc.description.lastpage354en_US
dc.description.firstpage346en_US
dc.relation.volume23en_US
dc.investigacionCiencias de la Saluden_US
dc.type2Artículoen_US
dc.contributor.daisngid642260-
dc.contributor.daisngid34647137-
dc.contributor.daisngid32164503-
dc.contributor.daisngid211858-
dc.contributor.daisngid7355254-
dc.contributor.daisngid3561343-
dc.contributor.daisngid421185-
dc.description.numberofpages9en_US
dc.utils.revisionen_US
dc.contributor.wosstandardWOS:Sole-Casals, J-
dc.contributor.wosstandardWOS:Munteanu, C-
dc.contributor.wosstandardWOS:Martin, OC-
dc.contributor.wosstandardWOS:Barbe, F-
dc.contributor.wosstandardWOS:Queipo, C-
dc.contributor.wosstandardWOS:Amilibia, J-
dc.contributor.wosstandardWOS:Duran-Cantolla, J-
dc.date.coverdateEnero 2014en_US
dc.identifier.ulpgcen_US
dc.description.sjr1,696
dc.description.jcr2,81
dc.description.sjrqQ1
dc.description.jcrqQ1
dc.description.scieSCIE
item.fulltextSin texto completo-
item.grantfulltextnone-
Colección:Artículos
Vista resumida

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.