Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/75310
Título: A global sensitivity analysis method applied to wind farm power output estimation models
Autores/as: Carta González, José Antonio 
Díaz, Santiago
Castañeda, A.
Clasificación UNESCO: 330607 Maquinaria rotatoria
332205 Fuentes no convencionales de energía
332201 Distribución de la energía
Palabras clave: Ensemble Technique
Global Sensitivity Analysis
Shapley Effects
Sobol' Indices
Vine Copula Modelling, et al.
Fecha de publicación: 2020
Proyectos: Adaptación Al Cambio Climático de Los Sistemas Energéticos de la Macaronesia 
Publicación seriada: Applied Energy 
Resumen: This paper proposes a global sensitivity analysis method applied to wind farm power output estimation models. The relevance of a global sensibility analysis is that it allows quantification of the contribution of the uncertainty of each input variable of the estimation model to the uncertainty of the response of the model. Measures of sensitivity based on Sobol' indices have been used in the field of energy. Sobol’ indices are constructed based on the assumption that the model input variables are statistically independent. The method proposed in this paper uses Shapley effects and a regular vine copula to take into account the probable dependency among the input variables of the models. The model used as case study is fed with sixteen meteorological variables and six operational variables. The following are some of the most important results obtained in the case study: a) Regular vine copulas were more suitable than the drawable vine and canonical vine subclass copulas to simulate the structure of dependency between the random input variables of the used wind farm power output estimation model; b) the Shapley effects were able to overcome the difficulty of interpretation presented by the Sobol' indices with respect to correlations among the input variables of the wind farm power output estimation model. In the case study, the wind speed, active power set-point and turbulence intensity variables explained 98.58% of the variance of the response of the model. The wind direction, nacelle orientation and air density variables only explained 1.42% of that variance.
URI: http://hdl.handle.net/10553/75310
ISSN: 0306-2619
DOI: 10.1016/j.apenergy.2020.115968
Fuente: Applied Energy[ISSN 0306-2619],v. 280
Colección:Artículos
Vista completa

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.