Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/75028
Título: | Why is a proton transformed into a hydride by [NiFe] hydrogenases? An intrinsic reactivity analysis based on conceptual DFT | Autores/as: | Qiu, Siyao Azofra Mesa, Luis Miguel MacFarlane, Douglas R. Sun, Chenghua |
Clasificación UNESCO: | 2210 Química física | Fecha de publicación: | 2016 | Publicación seriada: | Physical Chemistry Chemical Physics | Resumen: | The hydrogen evolution reaction (HER) catalysed by [NiFe] hydrogenases entails a series of chemical events involving great mechanistic interest. In an attempt to understand and delve into the question about ‘Why does nature work in that way?’, an in-depth intrinsic reactivity analysis based on conceptual DFT has been carried out focusing on the so-called I1 to Ni-C step, i.e. our work tries to answer how and why the proton attached to the reactive sulphur atom from one of the exo-cyclic cysteine residues is transformed into a bridging hydride to be shared between the Ni/Fe metals in the active site of [NiFe] hydrogenases, which involves not only H migration, but also a change of the charge state on Ni from Ni(I) to Ni(III). Our DFT results suggest that the transformation is motivated by spontaneous rearrangements of the electron density, and stabilisation comes from the decrease of both electronic activity and electrophilicity index from Ni. | URI: | http://hdl.handle.net/10553/75028 | ISSN: | 1463-9076 | DOI: | 10.1039/c6cp00948d | Fuente: | Physical chemistry chemical physics [ISSN 1463-9076], 18, n. 22, p. 15369-15374 |
Colección: | Artículos |
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.