Please use this identifier to cite or link to this item:
http://hdl.handle.net/10553/74731
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Suryanto, Bryan H. R. | en_US |
dc.contributor.author | Wang, Dabin | en_US |
dc.contributor.author | Azofra Mesa, Luis Miguel | en_US |
dc.contributor.author | Harb, Moussab | en_US |
dc.contributor.author | Cavallo, Luigi | en_US |
dc.contributor.author | Jalili, Rouhollah | en_US |
dc.contributor.author | Mitchell, David R. G. | en_US |
dc.contributor.author | Chatti, Manjunath | en_US |
dc.contributor.author | MacFarlane, Douglas R. | en_US |
dc.date.accessioned | 2020-10-14T11:27:21Z | - |
dc.date.available | 2020-10-14T11:27:21Z | - |
dc.date.issued | 2019 | en_US |
dc.identifier.issn | 2380-8195 | en_US |
dc.identifier.uri | http://hdl.handle.net/10553/74731 | - |
dc.description.abstract | The electrochemical N2 reduction reaction (NRR) offers a direct pathway to produce NH3 from renewable energy. However, aqueous NRR suffers from both low Faradaic efficiency (FE) and low yield rate. The main reason is the more favored H+ reduction to H2 in aqueous electrolytes. Here we demonstrate a highly selective Ru/MoS2 NRR catalyst on which the MoS2 polymorphs can be controlled to suppress H+ reduction. A NRR FE as high as 17.6% and NH3 yield rate of 1.14 × 10−10 mol cm−2 s −1 are demonstrated at 50 °C. Theoretical evidence supports a hypothesis that the high NRR activity originates from the synergistic interplay between the Ru clusters as N2 binding sites and nearby isolated S-vacancies on the 2H-MoS2 as centers for hydrogenation; this supports formation of NH3 at the Ru/2H-MoS2 interface. | en_US |
dc.language | eng | en_US |
dc.relation.ispartof | ACS Energy Letters | en_US |
dc.source | ACS Energy Letters [ISSN 2380-8195], v. 4, p. 430-435 | en_US |
dc.subject | 221001 Catálisis | en_US |
dc.title | MoS2 Polymorphic Engineering Enhances Selectivity in the Electrochemical Reduction of Nitrogen to Ammonia | en_US |
dc.type | info:eu-repo/semantics/article | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1021/acsenergylett.8b02257 | en_US |
dc.description.lastpage | 435 | en_US |
dc.identifier.issue | 2 | - |
dc.description.firstpage | 430 | en_US |
dc.relation.volume | 4 | en_US |
dc.investigacion | Ciencias | en_US |
dc.type2 | Artículo | en_US |
dc.description.observaciones | No ULPGC | en_US |
dc.description.numberofpages | 6 | en_US |
dc.utils.revision | Sí | en_US |
dc.identifier.ulpgc | No | en_US |
dc.description.sjr | 8,057 | |
dc.description.jcr | 19,003 | |
dc.description.sjrq | Q1 | |
dc.description.jcrq | Q1 | |
dc.description.scie | SCIE | |
item.fulltext | Con texto completo | - |
item.grantfulltext | open | - |
crisitem.author.dept | GIR IUNAT: Fotocatálisis y espectroscopía para aplicaciones medioambientales. | - |
crisitem.author.dept | IU de Estudios Ambientales y Recursos Naturales | - |
crisitem.author.orcid | 0000-0003-4974-1670 | - |
crisitem.author.parentorg | IU de Estudios Ambientales y Recursos Naturales | - |
crisitem.author.fullName | Azofra Mesa, Luis Miguel | - |
Appears in Collections: | Artículos |
Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.