Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/74679
DC FieldValueLanguage
dc.contributor.authorHarjani, Jackieen_US
dc.contributor.authorLópez, Belénen_US
dc.contributor.authorSadarangani, Kishinen_US
dc.date.accessioned2020-10-08T10:46:10Z-
dc.date.available2020-10-08T10:46:10Z-
dc.date.issued2020en_US
dc.identifier.issn0420-1213en_US
dc.identifier.otherScopus-
dc.identifier.urihttp://hdl.handle.net/10553/74679-
dc.description.abstractIn this article, we present a sufficient condition about the length of the interval for the existence and uniqueness of mild solutions to a fractional boundary value problem with Sturm-Liouville boundary conditions when the data function is of Lipschitzian type. Moreover, we present an application of our result to the eigenvalues problem and its connection with a Lyapunov-type inequality.en_US
dc.languageengen_US
dc.relationExistencia Y Unicidad De Soluciones En Ecuaciones Integrales, Funcionales Y Diferenciales Mediante Puntos Fijosen_US
dc.relation.ispartofDemonstratio Mathematicaen_US
dc.sourceDemonstratio Mathematica [ISSN 0420-1213], v. 53 (1), p. 167-173, (Enero 2020)en_US
dc.subject120219 Ecuaciones diferenciales ordinariasen_US
dc.subject120299 Otras (especificar)en_US
dc.subject.otherBoundary value problemen_US
dc.subject.otherFractional differential Equationen_US
dc.subject.otherMild solutionen_US
dc.titleExistence and uniqueness of mild solutions for a fractional differential equation under Sturm-Liouville boundary conditions when the data function is of Lipschitzian typeen_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1515/dema-2020-0014en_US
dc.identifier.scopus85091353472-
dc.contributor.authorscopusid26032169000-
dc.contributor.authorscopusid36623836800-
dc.contributor.authorscopusid6603285515-
dc.identifier.eissn2391-4661-
dc.description.lastpage173en_US
dc.identifier.issue1-
dc.description.firstpage167en_US
dc.relation.volume53en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.utils.revisionen_US
dc.date.coverdateEnero 2020en_US
dc.identifier.ulpgces
dc.description.sjr0,541
dc.description.sjrqQ2
dc.description.esciESCI
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.author.deptGIR Análisis funcional y ecuaciones integrales-
crisitem.author.deptDepartamento de Matemáticas-
crisitem.author.deptGIR Análisis funcional y ecuaciones integrales-
crisitem.author.deptDepartamento de Matemáticas-
crisitem.author.deptGIR Análisis funcional y ecuaciones integrales-
crisitem.author.deptDepartamento de Matemáticas-
crisitem.author.orcid0000-0002-3154-6773-
crisitem.author.orcid0000-0002-1484-0890-
crisitem.author.orcid0000-0002-7090-0114-
crisitem.author.parentorgDepartamento de Matemáticas-
crisitem.author.parentorgDepartamento de Matemáticas-
crisitem.author.parentorgDepartamento de Matemáticas-
crisitem.author.fullNameHarjani Saúco, Jackie Jerónimo-
crisitem.author.fullNameLópez Brito, María Belén-
crisitem.author.fullNameSadarangani Sadarangani, Kishin Bhagwands-
crisitem.project.principalinvestigatorHarjani Saúco, Jackie Jerónimo-
Appears in Collections:Artículos
Thumbnail
PDF
Adobe PDF (1,14 MB)
Show simple item record

SCOPUSTM   
Citations

5
checked on Mar 30, 2025

WEB OF SCIENCETM
Citations

5
checked on Mar 30, 2025

Page view(s)

122
checked on Feb 17, 2024

Download(s)

92
checked on Feb 17, 2024

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.