Identificador persistente para citar o vincular este elemento:
https://accedacris.ulpgc.es/handle/10553/74383
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Santana, Oliverio J. | en_US |
dc.contributor.author | Hernández-Sosa, Daniel | en_US |
dc.contributor.author | Martz, Jeffrey | en_US |
dc.contributor.author | Smith, Ryan N. | en_US |
dc.date.accessioned | 2020-09-15T07:40:51Z | - |
dc.date.available | 2020-09-15T07:40:51Z | - |
dc.date.issued | 2020 | en_US |
dc.identifier.other | Scopus | - |
dc.identifier.uri | https://accedacris.ulpgc.es/handle/10553/74383 | - |
dc.description.abstract | Recent advances in deep learning have made it possible to use neural networks for the detection and classification of oceanic mesoscale eddies from satellite altimetry data. Various neural network models have been proposed in recent years to address this challenge, but they have been trained using different types of input data and evaluated using different performance metrics, making a comparison between them impossible. In this article, we examine the most common dataset and metric choices, by analyzing the reasons for the divergences between them and pointing out the most appropriate choice to obtain a fair evaluation in this scenario. Based on this comparative study, we have developed several neural network models to detect and classify oceanic eddies from satellite images, showing that our most advanced models perform better than the models previously proposed in the literature. | en_US |
dc.language | eng | en_US |
dc.relation.ispartof | Remote Sensing | en_US |
dc.source | Remote Sensing [EISSN 2072-4292], v. 12 (16), 2625, (Agosto 2020) | en_US |
dc.subject | 120304 Inteligencia artificial | en_US |
dc.subject | 120326 Simulación | en_US |
dc.subject.other | Classification | en_US |
dc.subject.other | Convolutional neural network | en_US |
dc.subject.other | Data analysis | en_US |
dc.subject.other | Deep learning | en_US |
dc.subject.other | Detection | en_US |
dc.subject.other | Oceanic mesoscale eddy | en_US |
dc.subject.other | Satellite altimetry | en_US |
dc.subject.other | Supervised learning | en_US |
dc.title | Neural network training for the detection and classification of oceanic mesoscale eddies | en_US |
dc.type | info:eu-repo/semantics/Article | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.3390/RS12162625 | en_US |
dc.identifier.scopus | 85090018816 | - |
dc.contributor.authorscopusid | 57218681234 | - |
dc.contributor.authorscopusid | 6507124168 | - |
dc.contributor.authorscopusid | 57218680993 | - |
dc.contributor.authorscopusid | 15073550100 | - |
dc.identifier.eissn | 2072-4292 | - |
dc.identifier.issue | 16 | - |
dc.relation.volume | 12 | en_US |
dc.investigacion | Ingeniería y Arquitectura | en_US |
dc.type2 | Artículo | en_US |
dc.description.notas | This article belongs to the Special Issue Computer Vision and Deep Learning for Remote Sensing Applications | en_US |
dc.utils.revision | Sí | en_US |
dc.date.coverdate | Agosto 2020 | en_US |
dc.identifier.ulpgc | Sí | es |
dc.description.sjr | 1,285 | |
dc.description.jcr | 4,848 | |
dc.description.sjrq | Q1 | |
dc.description.jcrq | Q1 | |
dc.description.scie | SCIE | |
item.fulltext | Con texto completo | - |
item.grantfulltext | open | - |
crisitem.author.dept | GIR SIANI: Inteligencia Artificial, Robótica y Oceanografía Computacional | - |
crisitem.author.dept | IU Sistemas Inteligentes y Aplicaciones Numéricas | - |
crisitem.author.dept | Departamento de Informática y Sistemas | - |
crisitem.author.dept | GIR SIANI: Inteligencia Artificial, Robótica y Oceanografía Computacional | - |
crisitem.author.dept | IU Sistemas Inteligentes y Aplicaciones Numéricas | - |
crisitem.author.dept | Departamento de Informática y Sistemas | - |
crisitem.author.orcid | 0000-0001-7511-5783 | - |
crisitem.author.orcid | 0000-0003-3022-7698 | - |
crisitem.author.parentorg | IU Sistemas Inteligentes y Aplicaciones Numéricas | - |
crisitem.author.parentorg | IU Sistemas Inteligentes y Aplicaciones Numéricas | - |
crisitem.author.fullName | Santana Jaria, Oliverio Jesús | - |
crisitem.author.fullName | Hernández Sosa, José Daniel | - |
Appears in Collections: | Artículos |
SCOPUSTM
Citations
27
checked on Mar 30, 2025
WEB OF SCIENCETM
Citations
21
checked on Mar 30, 2025
Page view(s)
135
checked on May 11, 2024
Download(s)
102
checked on May 11, 2024
Google ScholarTM
Check
Altmetric
Share
Export metadata
Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.