Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/74383
Título: Neural network training for the detection and classification of oceanic mesoscale eddies
Autores/as: Santana, Oliverio J. 
Hernández-Sosa, Daniel 
Martz, Jeffrey
Smith, Ryan N.
Clasificación UNESCO: 120304 Inteligencia artificial
120326 Simulación
Palabras clave: Classification
Convolutional neural network
Data analysis
Deep learning
Detection, et al.
Fecha de publicación: 2020
Publicación seriada: Remote Sensing 
Resumen: Recent advances in deep learning have made it possible to use neural networks for the detection and classification of oceanic mesoscale eddies from satellite altimetry data. Various neural network models have been proposed in recent years to address this challenge, but they have been trained using different types of input data and evaluated using different performance metrics, making a comparison between them impossible. In this article, we examine the most common dataset and metric choices, by analyzing the reasons for the divergences between them and pointing out the most appropriate choice to obtain a fair evaluation in this scenario. Based on this comparative study, we have developed several neural network models to detect and classify oceanic eddies from satellite images, showing that our most advanced models perform better than the models previously proposed in the literature.
URI: http://hdl.handle.net/10553/74383
DOI: 10.3390/RS12162625
Fuente: Remote Sensing [EISSN 2072-4292], v. 12 (16), 2625, (Agosto 2020)
Colección:Artículos
miniatura
PDF
Adobe PDF (1,97 MB)
Vista completa

Citas SCOPUSTM   

24
actualizado el 15-dic-2024

Citas de WEB OF SCIENCETM
Citations

19
actualizado el 15-dic-2024

Visitas

135
actualizado el 11-may-2024

Descargas

102
actualizado el 11-may-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.