Identificador persistente para citar o vincular este elemento:
				https://accedacris.ulpgc.es/jspui/handle/10553/74383
			
		| Título: | Neural network training for the detection and classification of oceanic mesoscale eddies | Autores/as: | Santana, Oliverio J. Hernández-Sosa, Daniel Martz, Jeffrey Smith, Ryan N. | Clasificación UNESCO: | 120304 Inteligencia artificial 120326 Simulación | Palabras clave: | Classification Convolutional neural network Data analysis Deep learning Detection, et al. | Fecha de publicación: | 2020 | Publicación seriada: | Remote Sensing | Resumen: | Recent advances in deep learning have made it possible to use neural networks for the detection and classification of oceanic mesoscale eddies from satellite altimetry data. Various neural network models have been proposed in recent years to address this challenge, but they have been trained using different types of input data and evaluated using different performance metrics, making a comparison between them impossible. In this article, we examine the most common dataset and metric choices, by analyzing the reasons for the divergences between them and pointing out the most appropriate choice to obtain a fair evaluation in this scenario. Based on this comparative study, we have developed several neural network models to detect and classify oceanic eddies from satellite images, showing that our most advanced models perform better than the models previously proposed in the literature. | URI: | https://accedacris.ulpgc.es/handle/10553/74383 | DOI: | 10.3390/RS12162625 | Fuente: | Remote Sensing [EISSN 2072-4292], v. 12 (16), 2625, (Agosto 2020) | 
| Colección: | Artículos | 
Citas SCOPUSTM   
 
										
									
									
		
			
				
					
						27
					
					
				
			
			
		
		
								
										actualizado el 08-jun-2025
									
								Citas de WEB OF SCIENCETM
 Citations
										
									
									
		
			
				
					
						21
					
					
				
			
			
		
		
								
										actualizado el 08-jun-2025
									
								Visitas
135
										actualizado el 11-may-2024
									
								Descargas
102
										actualizado el 11-may-2024
									
								Google ScholarTM
							Verifica
						Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.
