Please use this identifier to cite or link to this item:
Title: Visualization of Viral Infection Dynamics in a Unicellular Eukaryote and Quantification of Viral Production Using Virus Fluorescence in situ Hybridization
Authors: Castillo, Yaiza M.
Sebastián Caumel, Marta 
Forn, Irene
Grimsley, Nigel
Yau, Sheree
Moraru, Cristina
Vaqué, Dolors
UNESCO Clasification: 2414 Microbiología
Keywords: Culture System
Marine Picoeukaryote
Ostreococcus Tauri
Ostreococcus Tauri Virus 5
Virus Fluorescence In Situ Hybridization
Virus-Host Interactions
Issue Date: 2020
Journal: Frontiers in Microbiology 
Abstract: One of the major challenges in viral ecology is to assess the impact of viruses in controlling the abundance of specific hosts in the environment. To this end, techniques that enable the detection and quantification of virus-host interactions at the single-cell level are essential. With this goal in mind, we implemented virus fluorescence in situ hybridization (VirusFISH) using as a model the marine picoeukaryote Ostreococcus tauri and its virus Ostreococcus tauri virus 5 (OtV5). VirusFISH allowed the visualization and quantification of the proportion of infected cells during an infection cycle in experimental conditions. We were also able to quantify the abundance of free viruses released during cell lysis, discriminating OtV5 from other mid-level fluorescence phages in our non-axenic infected culture that were not easily distinguishable with flow cytometry. Our results showed that although the major lysis of the culture occurred between 24 and 48 h after OtV5 inoculation, some new viruses were already produced between 8 and 24 h. With this work, we demonstrate that VirusFISH is a promising technique to study specific virus-host interactions in non-axenic cultures and establish a framework for its application in complex natural communities.
ISSN: 1664-302X
DOI: 10.3389/fmicb.2020.01559
Source: Frontiers in Microbiology [EISSN 1664-302X], v. 11, (Julio 2020)
Appears in Collections:Artículos
Show full item record

Page view(s)

checked on Sep 20, 2020

Google ScholarTM




Export metadata

Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.