Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/73841
Título: | Gesture Recognition with 3D Sensors using Hidden Markov Models and Clustering | Autores/as: | Steinmetzer, Tobias Piatraschk, Simon Bonninger, Ingrid Travieso, Carlos M. Priwitzer, Barbara |
Clasificación UNESCO: | 3314 Tecnología médica | Palabras clave: | Clustering Depth Sensor Gesture Hmm |
Fecha de publicación: | 2019 | Conferencia: | 2019 IEEE International Work Conference on Bioinspired Intelligence, IWOBI 2019 | Resumen: | We propose a method for recognizing dynamic gestures using a 3D sensor. New aspects of the developed system include problem-adapted data conversion and compression as well as automatic detection of different variants of the same gesture via clustering with a suitable metric inspired by Jaccard metric. The combination of Hidden Markov Models and clustering leads to robust detection of different executions based on a small set of training data. We achieved an increase of 5% recognition rate compared to regular Hidden Markov Models. The system has been used for human-machine interaction and might serve as an assistive system in physiotherapy and neurological or orthopedic diagnosis. | URI: | http://hdl.handle.net/10553/73841 | ISBN: | 9781728109671 | DOI: | 10.1109/IWOBI47054.2019.9114513 | Fuente: | IWOBI 2019 - IEEE International Work Conference on Bioinspired Intelligence, Proceedings, p. 127-132, (Julio 2019) |
Colección: | Actas de congresos |
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.