Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/73841
Campo DC Valoridioma
dc.contributor.authorSteinmetzer, Tobiasen_US
dc.contributor.authorPiatraschk, Simonen_US
dc.contributor.authorBonninger, Ingriden_US
dc.contributor.authorTravieso, Carlos M.en_US
dc.contributor.authorPriwitzer, Barbaraen_US
dc.date.accessioned2020-07-28T10:06:40Z-
dc.date.available2020-07-28T10:06:40Z-
dc.date.issued2019en_US
dc.identifier.isbn9781728109671en_US
dc.identifier.otherScopus-
dc.identifier.urihttp://hdl.handle.net/10553/73841-
dc.description.abstractWe propose a method for recognizing dynamic gestures using a 3D sensor. New aspects of the developed system include problem-adapted data conversion and compression as well as automatic detection of different variants of the same gesture via clustering with a suitable metric inspired by Jaccard metric. The combination of Hidden Markov Models and clustering leads to robust detection of different executions based on a small set of training data. We achieved an increase of 5% recognition rate compared to regular Hidden Markov Models. The system has been used for human-machine interaction and might serve as an assistive system in physiotherapy and neurological or orthopedic diagnosis.en_US
dc.languageengen_US
dc.sourceIWOBI 2019 - IEEE International Work Conference on Bioinspired Intelligence, Proceedings, p. 127-132, (Julio 2019)en_US
dc.subject3314 Tecnología médicaen_US
dc.subject.otherClusteringen_US
dc.subject.otherDepth Sensoren_US
dc.subject.otherGestureen_US
dc.subject.otherHmmen_US
dc.titleGesture Recognition with 3D Sensors using Hidden Markov Models and Clusteringen_US
dc.typeinfo:eu-repo/semantics/conferenceObjecten_US
dc.typeConferenceObjecten_US
dc.relation.conference2019 IEEE International Work Conference on Bioinspired Intelligence, IWOBI 2019en_US
dc.identifier.doi10.1109/IWOBI47054.2019.9114513en_US
dc.identifier.scopus85087281021-
dc.contributor.authorscopusid57204115368-
dc.contributor.authorscopusid57217481572-
dc.contributor.authorscopusid56395430400-
dc.contributor.authorscopusid6602376272-
dc.contributor.authorscopusid57204107644-
dc.description.lastpage132en_US
dc.description.firstpage127en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Actas de congresosen_US
dc.utils.revisionen_US
dc.date.coverdateJulio 2019en_US
dc.identifier.conferenceidevents121841-
dc.identifier.ulpgces
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.event.eventsstartdate22-10-2019-
crisitem.event.eventsenddate25-10-2019-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.orcid0000-0002-4621-2768-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.fullNameSteinmetzer, Tobias-
crisitem.author.fullNameTravieso González, Carlos Manuel-
Colección:Actas de congresos
Vista resumida

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.