Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/73841
DC FieldValueLanguage
dc.contributor.authorSteinmetzer, Tobiasen_US
dc.contributor.authorPiatraschk, Simonen_US
dc.contributor.authorBonninger, Ingriden_US
dc.contributor.authorTravieso, Carlos M.en_US
dc.contributor.authorPriwitzer, Barbaraen_US
dc.date.accessioned2020-07-28T10:06:40Z-
dc.date.available2020-07-28T10:06:40Z-
dc.date.issued2019en_US
dc.identifier.isbn9781728109671en_US
dc.identifier.otherScopus-
dc.identifier.urihttp://hdl.handle.net/10553/73841-
dc.description.abstractWe propose a method for recognizing dynamic gestures using a 3D sensor. New aspects of the developed system include problem-adapted data conversion and compression as well as automatic detection of different variants of the same gesture via clustering with a suitable metric inspired by Jaccard metric. The combination of Hidden Markov Models and clustering leads to robust detection of different executions based on a small set of training data. We achieved an increase of 5% recognition rate compared to regular Hidden Markov Models. The system has been used for human-machine interaction and might serve as an assistive system in physiotherapy and neurological or orthopedic diagnosis.en_US
dc.languageengen_US
dc.sourceIWOBI 2019 - IEEE International Work Conference on Bioinspired Intelligence, Proceedings, p. 127-132, (Julio 2019)en_US
dc.subject3314 Tecnología médicaen_US
dc.subject.otherClusteringen_US
dc.subject.otherDepth Sensoren_US
dc.subject.otherGestureen_US
dc.subject.otherHmmen_US
dc.titleGesture Recognition with 3D Sensors using Hidden Markov Models and Clusteringen_US
dc.typeinfo:eu-repo/semantics/conferenceObjecten_US
dc.typeConferenceObjecten_US
dc.relation.conference2019 IEEE International Work Conference on Bioinspired Intelligence, IWOBI 2019en_US
dc.identifier.doi10.1109/IWOBI47054.2019.9114513en_US
dc.identifier.scopus85087281021-
dc.contributor.authorscopusid57204115368-
dc.contributor.authorscopusid57217481572-
dc.contributor.authorscopusid56395430400-
dc.contributor.authorscopusid6602376272-
dc.contributor.authorscopusid57204107644-
dc.description.lastpage132en_US
dc.description.firstpage127en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Actas de congresosen_US
dc.utils.revisionen_US
dc.date.coverdateJulio 2019en_US
dc.identifier.conferenceidevents121841-
dc.identifier.ulpgces
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.event.eventsstartdate22-10-2019-
crisitem.event.eventsenddate25-10-2019-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.orcid0000-0002-4621-2768-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.fullNameSteinmetzer, Tobias-
crisitem.author.fullNameTravieso González, Carlos Manuel-
Appears in Collections:Actas de congresos
Show simple item record

Page view(s)

116
checked on Sep 21, 2024

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.