Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/73728
Campo DC | Valor | idioma |
---|---|---|
dc.contributor.author | Mostafa, Sheikh Shanawaz | en_US |
dc.contributor.author | Baptista, Darío | en_US |
dc.contributor.author | Ravelo García, Antonio Gabriel | en_US |
dc.contributor.author | Juliá-Serdá, Gabriel | en_US |
dc.contributor.author | Morgado-Dias, Fernando | en_US |
dc.date.accessioned | 2020-07-20T08:34:49Z | - |
dc.date.available | 2020-07-20T08:34:49Z | - |
dc.date.issued | 2020 | en_US |
dc.identifier.issn | 0169-2607 | en_US |
dc.identifier.other | Scopus | - |
dc.identifier.uri | http://hdl.handle.net/10553/73728 | - |
dc.description.abstract | Background and objective: Sleep apnea is a common sleep disorder, usually diagnosed using an expensive, highly specialized, and inconvenient test called polysomnography. A single SpO2 sensor based on an automated classification system can be developed to simplify the apnea detection. The main objective of this work is to develop a classifier based on a convolution neural network with the capability of detecting apnea events from one dimensional SpO2 signal. However, to find an optimum convolution neural network structure is a daunting task is usually done by a trial-and-error method. To solve this problem, a method is proposed to save time and simplify the process of searching for an optimum convolution neural network structure. Methods: Greedy based optimization is proposed to search for an optimized convolution neural network structure. Three different variants of greedy based optimization are proposed: the topology transfer, the weighted-topology transfer with rough estimation, and the weighted-topology transfer with fine tuning. The subject independent and the cross-database test are performed for the analysis. Results: Considering the balance between the execution time and the performance, the weighted-topology transfer with rough estimation is the best. An accuracy of 88.49% for the HuGCDN2008 database and 95.14% for the Apnea-ECG database are obtained for apnea events detection per minute. Regarding the apnea patient detection, also referred to as global classification, an accuracy of 95.71% is achieved for the HuGCDN2008 database, and 100% is achieved for the AED database without removing any subjects from both databases. Conclusions: The proposed one-dimensional convolution neural network performs better in a similar situation than those presented in the literature. The greedy based methods, mainly the weighted-topology transfer with rough estimation, is an alternative method to extensive trial and error method. | en_US |
dc.language | eng | en_US |
dc.relation.ispartof | Computer Methods and Programs in Biomedicine | en_US |
dc.source | Computer Methods and Programs in Biomedicine [ISSN 0169-2607], n. 197 | en_US |
dc.subject | 3314 Tecnología médica | en_US |
dc.subject.other | Classification Algorithms, Sleep Apnea | en_US |
dc.subject.other | Cnn | en_US |
dc.subject.other | Hyperparameter | en_US |
dc.subject.other | Optimization | en_US |
dc.title | Greedy based convolutional neural network optimization for detecting apnea | en_US |
dc.type | info:eu-repo/semantics/Article | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1016/j.cmpb.2020.105640 | en_US |
dc.identifier.scopus | 85087783031 | - |
dc.contributor.authorscopusid | 55489640900 | - |
dc.contributor.authorscopusid | 42360968300 | - |
dc.contributor.authorscopusid | 9634135600 | - |
dc.contributor.authorscopusid | 6603171553 | - |
dc.contributor.authorscopusid | 57200602527 | - |
dc.identifier.eissn | 1872-7565 | - |
dc.relation.volume | 197 | en_US |
dc.investigacion | Ingeniería y Arquitectura | en_US |
dc.type2 | Artículo | en_US |
dc.utils.revision | Sí | en_US |
dc.date.coverdate | Diciembre 2020 | en_US |
dc.identifier.ulpgc | Sí | en_US |
dc.contributor.buulpgc | BU-TEL | en_US |
dc.description.sjr | 0,924 | |
dc.description.jcr | 5,428 | |
dc.description.sjrq | Q1 | |
dc.description.jcrq | Q1 | |
dc.description.scie | SCIE | |
item.fulltext | Sin texto completo | - |
item.grantfulltext | none | - |
crisitem.author.dept | GIR IDeTIC: División de Procesado Digital de Señales | - |
crisitem.author.dept | IU para el Desarrollo Tecnológico y la Innovación | - |
crisitem.author.dept | Departamento de Señales y Comunicaciones | - |
crisitem.author.orcid | 0000-0002-8512-965X | - |
crisitem.author.parentorg | IU para el Desarrollo Tecnológico y la Innovación | - |
crisitem.author.fullName | Ravelo García, Antonio Gabriel | - |
Colección: | Artículos |
Citas SCOPUSTM
15
actualizado el 29-dic-2024
Citas de WEB OF SCIENCETM
Citations
15
actualizado el 29-dic-2024
Visitas
173
actualizado el 14-dic-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.