Please use this identifier to cite or link to this item:
http://hdl.handle.net/10553/73728
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Mostafa, Sheikh Shanawaz | en_US |
dc.contributor.author | Baptista, Darío | en_US |
dc.contributor.author | Ravelo García, Antonio Gabriel | en_US |
dc.contributor.author | Juliá-Serdá, Gabriel | en_US |
dc.contributor.author | Morgado-Dias, Fernando | en_US |
dc.date.accessioned | 2020-07-20T08:34:49Z | - |
dc.date.available | 2020-07-20T08:34:49Z | - |
dc.date.issued | 2020 | en_US |
dc.identifier.issn | 0169-2607 | en_US |
dc.identifier.other | Scopus | - |
dc.identifier.uri | http://hdl.handle.net/10553/73728 | - |
dc.description.abstract | Background and objective: Sleep apnea is a common sleep disorder, usually diagnosed using an expensive, highly specialized, and inconvenient test called polysomnography. A single SpO2 sensor based on an automated classification system can be developed to simplify the apnea detection. The main objective of this work is to develop a classifier based on a convolution neural network with the capability of detecting apnea events from one dimensional SpO2 signal. However, to find an optimum convolution neural network structure is a daunting task is usually done by a trial-and-error method. To solve this problem, a method is proposed to save time and simplify the process of searching for an optimum convolution neural network structure. Methods: Greedy based optimization is proposed to search for an optimized convolution neural network structure. Three different variants of greedy based optimization are proposed: the topology transfer, the weighted-topology transfer with rough estimation, and the weighted-topology transfer with fine tuning. The subject independent and the cross-database test are performed for the analysis. Results: Considering the balance between the execution time and the performance, the weighted-topology transfer with rough estimation is the best. An accuracy of 88.49% for the HuGCDN2008 database and 95.14% for the Apnea-ECG database are obtained for apnea events detection per minute. Regarding the apnea patient detection, also referred to as global classification, an accuracy of 95.71% is achieved for the HuGCDN2008 database, and 100% is achieved for the AED database without removing any subjects from both databases. Conclusions: The proposed one-dimensional convolution neural network performs better in a similar situation than those presented in the literature. The greedy based methods, mainly the weighted-topology transfer with rough estimation, is an alternative method to extensive trial and error method. | en_US |
dc.language | eng | en_US |
dc.relation.ispartof | Computer Methods and Programs in Biomedicine | en_US |
dc.source | Computer Methods and Programs in Biomedicine [ISSN 0169-2607], n. 197 | en_US |
dc.subject | 3314 Tecnología médica | en_US |
dc.subject.other | Classification Algorithms, Sleep Apnea | en_US |
dc.subject.other | Cnn | en_US |
dc.subject.other | Hyperparameter | en_US |
dc.subject.other | Optimization | en_US |
dc.title | Greedy based convolutional neural network optimization for detecting apnea | en_US |
dc.type | info:eu-repo/semantics/Article | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1016/j.cmpb.2020.105640 | en_US |
dc.identifier.scopus | 85087783031 | - |
dc.contributor.authorscopusid | 55489640900 | - |
dc.contributor.authorscopusid | 42360968300 | - |
dc.contributor.authorscopusid | 9634135600 | - |
dc.contributor.authorscopusid | 6603171553 | - |
dc.contributor.authorscopusid | 57200602527 | - |
dc.identifier.eissn | 1872-7565 | - |
dc.relation.volume | 197 | en_US |
dc.investigacion | Ingeniería y Arquitectura | en_US |
dc.type2 | Artículo | en_US |
dc.utils.revision | Sí | en_US |
dc.date.coverdate | Diciembre 2020 | en_US |
dc.identifier.ulpgc | Sí | en_US |
dc.contributor.buulpgc | BU-TEL | en_US |
dc.description.sjr | 0,924 | |
dc.description.jcr | 5,428 | |
dc.description.sjrq | Q1 | |
dc.description.jcrq | Q1 | |
dc.description.scie | SCIE | |
item.fulltext | Sin texto completo | - |
item.grantfulltext | none | - |
crisitem.author.dept | GIR IDeTIC: División de Procesado Digital de Señales | - |
crisitem.author.dept | IU para el Desarrollo Tecnológico y la Innovación | - |
crisitem.author.dept | Departamento de Señales y Comunicaciones | - |
crisitem.author.orcid | 0000-0002-8512-965X | - |
crisitem.author.parentorg | IU para el Desarrollo Tecnológico y la Innovación | - |
crisitem.author.fullName | Ravelo García, Antonio Gabriel | - |
Appears in Collections: | Artículos |
SCOPUSTM
Citations
15
checked on Dec 29, 2024
WEB OF SCIENCETM
Citations
15
checked on Dec 29, 2024
Page view(s)
173
checked on Dec 14, 2024
Google ScholarTM
Check
Altmetric
Share
Export metadata
Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.