Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/73728
DC FieldValueLanguage
dc.contributor.authorMostafa, Sheikh Shanawazen_US
dc.contributor.authorBaptista, Daríoen_US
dc.contributor.authorRavelo García, Antonio Gabrielen_US
dc.contributor.authorJuliá-Serdá, Gabrielen_US
dc.contributor.authorMorgado-Dias, Fernandoen_US
dc.date.accessioned2020-07-20T08:34:49Z-
dc.date.available2020-07-20T08:34:49Z-
dc.date.issued2020en_US
dc.identifier.issn0169-2607en_US
dc.identifier.otherScopus-
dc.identifier.urihttp://hdl.handle.net/10553/73728-
dc.description.abstractBackground and objective: Sleep apnea is a common sleep disorder, usually diagnosed using an expensive, highly specialized, and inconvenient test called polysomnography. A single SpO2 sensor based on an automated classification system can be developed to simplify the apnea detection. The main objective of this work is to develop a classifier based on a convolution neural network with the capability of detecting apnea events from one dimensional SpO2 signal. However, to find an optimum convolution neural network structure is a daunting task is usually done by a trial-and-error method. To solve this problem, a method is proposed to save time and simplify the process of searching for an optimum convolution neural network structure. Methods: Greedy based optimization is proposed to search for an optimized convolution neural network structure. Three different variants of greedy based optimization are proposed: the topology transfer, the weighted-topology transfer with rough estimation, and the weighted-topology transfer with fine tuning. The subject independent and the cross-database test are performed for the analysis. Results: Considering the balance between the execution time and the performance, the weighted-topology transfer with rough estimation is the best. An accuracy of 88.49% for the HuGCDN2008 database and 95.14% for the Apnea-ECG database are obtained for apnea events detection per minute. Regarding the apnea patient detection, also referred to as global classification, an accuracy of 95.71% is achieved for the HuGCDN2008 database, and 100% is achieved for the AED database without removing any subjects from both databases. Conclusions: The proposed one-dimensional convolution neural network performs better in a similar situation than those presented in the literature. The greedy based methods, mainly the weighted-topology transfer with rough estimation, is an alternative method to extensive trial and error method.en_US
dc.languageengen_US
dc.relation.ispartofComputer Methods and Programs in Biomedicineen_US
dc.sourceComputer Methods and Programs in Biomedicine [ISSN 0169-2607], n. 197en_US
dc.subject3314 Tecnología médicaen_US
dc.subject.otherClassification Algorithms, Sleep Apneaen_US
dc.subject.otherCnnen_US
dc.subject.otherHyperparameteren_US
dc.subject.otherOptimizationen_US
dc.titleGreedy based convolutional neural network optimization for detecting apneaen_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.cmpb.2020.105640en_US
dc.identifier.scopus85087783031-
dc.contributor.authorscopusid55489640900-
dc.contributor.authorscopusid42360968300-
dc.contributor.authorscopusid9634135600-
dc.contributor.authorscopusid6603171553-
dc.contributor.authorscopusid57200602527-
dc.identifier.eissn1872-7565-
dc.relation.volume197en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.utils.revisionen_US
dc.date.coverdateDiciembre 2020en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-TELen_US
dc.description.sjr0,924
dc.description.jcr5,428
dc.description.sjrqQ1
dc.description.jcrqQ1
dc.description.scieSCIE
item.fulltextSin texto completo-
item.grantfulltextnone-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.orcid0000-0002-8512-965X-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.fullNameRavelo García, Antonio Gabriel-
Appears in Collections:Artículos
Show simple item record

SCOPUSTM   
Citations

15
checked on Dec 29, 2024

WEB OF SCIENCETM
Citations

15
checked on Dec 29, 2024

Page view(s)

173
checked on Dec 14, 2024

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.