Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/73288
Campo DC Valoridioma
dc.contributor.authorPérez Nava, Fernandoen_US
dc.contributor.authorFalcón Martel, Antonioen_US
dc.date.accessioned2020-06-15T19:02:20Z-
dc.date.available2020-06-15T19:02:20Z-
dc.date.issued2003en_US
dc.identifier.issn0031-3203en_US
dc.identifier.otherWoS-
dc.identifier.urihttp://hdl.handle.net/10553/73288-
dc.description.abstractThis paper proposes a new model for contour deformations using wavelets. This model uses Sobolev spaces to control the smoothness of the contour deformation. This formulation defines a probabilistic model that induces a prior distribution for contour deformation. Based on this distribution, the fitting problem is solved in Bayesian terms. The deformation model is also used to generate a prior dynamic model for contour evolution in time. This probabilistic model is then applied to solve the tracking problem. Computational results for several real-image problems are given for both the Kalman and condensation filters.en_US
dc.languageengen_US
dc.relation.ispartofPattern Recognitionen_US
dc.sourcePattern Recognition [ISSN 0031-3203], v. 36 (5), p. 1119-1130, (Mayo 2003)en_US
dc.subject1202 Análisis y análisis funcionalen_US
dc.subject120304 Inteligencia artificialen_US
dc.subject.otherShapeen_US
dc.subject.otherActive contoursen_US
dc.subject.otherDeformation modelingen_US
dc.subject.otherWaveletsen_US
dc.subject.otherSobolev spacesen_US
dc.subject.otherContour fittingen_US
dc.subject.otherContour trackingen_US
dc.subject.otherKalman filteren_US
dc.subject.otherCondensation filteren_US
dc.titleWavelet modeling of contour deformations in Sobolev spaces for litting and tracking applicationsen_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/S0031-3203(02)00168-1en_US
dc.identifier.scopus0037405870-
dc.identifier.isi000181126200005-
dc.contributor.authorscopusid12753631600-
dc.contributor.authorscopusid7102242140-
dc.identifier.eissn1873-5142-
dc.description.lastpage1130en_US
dc.identifier.issue5-
dc.description.firstpage1119en_US
dc.relation.volume36en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.contributor.daisngid4715345-
dc.contributor.daisngid12426293-
dc.description.numberofpages12en_US
dc.utils.revisionen_US
dc.contributor.wosstandardWOS:Nava, FP-
dc.contributor.wosstandardWOS:Martel, AF-
dc.date.coverdateMayo 2003en_US
dc.identifier.ulpgces
dc.description.jcr1,611
dc.description.jcrqQ1
dc.description.scieSCIE
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.author.deptGIR SIANI: Inteligencia Artificial, Redes Neuronales, Aprendizaje Automático e Ingeniería de Datos-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.orcid0000-0002-7467-947X-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.fullNameFalcón Martel,Antonio-
Colección:Artículos
Vista resumida

Citas SCOPUSTM   

5
actualizado el 17-nov-2024

Citas de WEB OF SCIENCETM
Citations

5
actualizado el 17-nov-2024

Visitas

88
actualizado el 04-may-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.