Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/73288
DC FieldValueLanguage
dc.contributor.authorPérez Nava, Fernandoen_US
dc.contributor.authorFalcón Martel, Antonioen_US
dc.date.accessioned2020-06-15T19:02:20Z-
dc.date.available2020-06-15T19:02:20Z-
dc.date.issued2003en_US
dc.identifier.issn0031-3203en_US
dc.identifier.otherWoS-
dc.identifier.urihttp://hdl.handle.net/10553/73288-
dc.description.abstractThis paper proposes a new model for contour deformations using wavelets. This model uses Sobolev spaces to control the smoothness of the contour deformation. This formulation defines a probabilistic model that induces a prior distribution for contour deformation. Based on this distribution, the fitting problem is solved in Bayesian terms. The deformation model is also used to generate a prior dynamic model for contour evolution in time. This probabilistic model is then applied to solve the tracking problem. Computational results for several real-image problems are given for both the Kalman and condensation filters.en_US
dc.languageengen_US
dc.relation.ispartofPattern Recognitionen_US
dc.sourcePattern Recognition [ISSN 0031-3203], v. 36 (5), p. 1119-1130, (Mayo 2003)en_US
dc.subject1202 Análisis y análisis funcionalen_US
dc.subject120304 Inteligencia artificialen_US
dc.subject.otherShapeen_US
dc.subject.otherActive contoursen_US
dc.subject.otherDeformation modelingen_US
dc.subject.otherWaveletsen_US
dc.subject.otherSobolev spacesen_US
dc.subject.otherContour fittingen_US
dc.subject.otherContour trackingen_US
dc.subject.otherKalman filteren_US
dc.subject.otherCondensation filteren_US
dc.titleWavelet modeling of contour deformations in Sobolev spaces for litting and tracking applicationsen_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/S0031-3203(02)00168-1en_US
dc.identifier.scopus0037405870-
dc.identifier.isi000181126200005-
dc.contributor.authorscopusid12753631600-
dc.contributor.authorscopusid7102242140-
dc.identifier.eissn1873-5142-
dc.description.lastpage1130en_US
dc.identifier.issue5-
dc.description.firstpage1119en_US
dc.relation.volume36en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.contributor.daisngid4715345-
dc.contributor.daisngid12426293-
dc.description.numberofpages12en_US
dc.utils.revisionen_US
dc.contributor.wosstandardWOS:Nava, FP-
dc.contributor.wosstandardWOS:Martel, AF-
dc.date.coverdateMayo 2003en_US
dc.identifier.ulpgces
dc.description.jcr1,611
dc.description.jcrqQ1
dc.description.scieSCIE
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.author.deptGIR SIANI: Inteligencia Artificial, Redes Neuronales, Aprendizaje Automático e Ingeniería de Datos-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.orcid0000-0002-7467-947X-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.fullNameFalcón Martel,Antonio-
Appears in Collections:Artículos
Show simple item record

SCOPUSTM   
Citations

5
checked on Nov 17, 2024

WEB OF SCIENCETM
Citations

5
checked on Nov 17, 2024

Page view(s)

88
checked on May 4, 2024

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.