Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/73216
Título: Hankel complementary integral transformations of arbitrary order
Autores/as: Linares Linares, M.
Mendez Pérez, J. M.R.
Clasificación UNESCO: 1202 Análisis y análisis funcional
120218 Calculo operacional
Palabras clave: Complementary Hankel transformations
Generalized functions
Parseval equation
Fecha de publicación: 1992
Publicación seriada: International Journal of Mathematics and Mathematical Sciences 
Resumen: Four selfreciprocal integral transformations of Hankel type are defined through [formula omitted] where i = 1, 2, 3, 4; μ ≥ 0; α1(x) = x1 +2μ, g1,μ(x) = x−μJμ(x), Jμ(x) being the Bessel function of the first kind of order; μ; α2(x) = x1−2μ, g2,μ(x) =(−1)μx2μ g1,μ(x); α3(x) = x−1−2μ, g3,μ(x) = x1+2μ g1,μ(x), and α4(x) = x−1+2μ, g4,μ(x) = (−1)μx g1,μ(x). The simultaneous use of transformations H1,μ and H2,μ (which are denoted by Hμ) allows us to solve many problems of Mathematical Physics involving the differential operator Δμ = D2 + (1 + 2μ)x−1D, whereas the pair of transformations H3,μ and H4,μ (which we express by Hμ) permits us to tackle those problems containing its adjoint operator [formula omitted], no matter what the real value of μ be. These transformations are also investigated in a space of generalized functions according to the mixed Parseval equation [formula omitted], which is now valid for all real μ. © 1987, Hindawi Publishing Corporation. All rights reserved.
URI: http://hdl.handle.net/10553/73216
ISSN: 0161-1712
DOI: 10.1155/S0161171292000401
Fuente: International Journal of Mathematics and Mathematical Sciences [ISSN 0161-1712], v. 15 (2), p. 323-332, (Enero 1992)
Colección:Artículos
miniatura
PDF
Adobe PDF (2,55 MB)
Vista completa

Citas SCOPUSTM   

8
actualizado el 17-nov-2024

Visitas

79
actualizado el 09-nov-2024

Descargas

41
actualizado el 09-nov-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.