Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/73216
DC FieldValueLanguage
dc.contributor.authorLinares Linares, M.en_US
dc.contributor.authorMendez Pérez, J. M.R.en_US
dc.date.accessioned2020-06-11T12:42:30Z-
dc.date.available2020-06-11T12:42:30Z-
dc.date.issued1992en_US
dc.identifier.issn0161-1712en_US
dc.identifier.otherScopus-
dc.identifier.urihttp://hdl.handle.net/10553/73216-
dc.description.abstractFour selfreciprocal integral transformations of Hankel type are defined through [formula omitted] where i = 1, 2, 3, 4; μ ≥ 0; α1(x) = x1 +2μ, g1,μ(x) = x−μJμ(x), Jμ(x) being the Bessel function of the first kind of order; μ; α2(x) = x1−2μ, g2,μ(x) =(−1)μx2μ g1,μ(x); α3(x) = x−1−2μ, g3,μ(x) = x1+2μ g1,μ(x), and α4(x) = x−1+2μ, g4,μ(x) = (−1)μx g1,μ(x). The simultaneous use of transformations H1,μ and H2,μ (which are denoted by Hμ) allows us to solve many problems of Mathematical Physics involving the differential operator Δμ = D2 + (1 + 2μ)x−1D, whereas the pair of transformations H3,μ and H4,μ (which we express by Hμ) permits us to tackle those problems containing its adjoint operator [formula omitted], no matter what the real value of μ be. These transformations are also investigated in a space of generalized functions according to the mixed Parseval equation [formula omitted], which is now valid for all real μ. © 1987, Hindawi Publishing Corporation. All rights reserved.en_US
dc.languageengen_US
dc.relation.ispartofInternational Journal of Mathematics and Mathematical Sciencesen_US
dc.sourceInternational Journal of Mathematics and Mathematical Sciences [ISSN 0161-1712], v. 15 (2), p. 323-332, (Enero 1992)en_US
dc.subject1202 Análisis y análisis funcionalen_US
dc.subject120218 Calculo operacionalen_US
dc.subject.otherComplementary Hankel transformationsen_US
dc.subject.otherGeneralized functionsen_US
dc.subject.otherParseval equationen_US
dc.titleHankel complementary integral transformations of arbitrary orderen_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1155/S0161171292000401en_US
dc.identifier.scopus41849113879-
dc.contributor.authorscopusid57213632178-
dc.contributor.authorscopusid55666268100-
dc.identifier.eissn1687-0425-
dc.description.lastpage332en_US
dc.identifier.issue2-
dc.description.firstpage323en_US
dc.relation.volume15en_US
dc.investigacionCienciasen_US
dc.type2Artículoen_US
dc.utils.revisionen_US
dc.date.coverdateEnero 1992en_US
dc.identifier.ulpgces
item.grantfulltextopen-
item.fulltextCon texto completo-
Appears in Collections:Artículos
Thumbnail
PDF
Adobe PDF (2,55 MB)
Show simple item record

SCOPUSTM   
Citations

8
checked on Nov 17, 2024

Page view(s)

79
checked on Nov 9, 2024

Download(s)

41
checked on Nov 9, 2024

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.