Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/73216
Título: Hankel complementary integral transformations of arbitrary order
Autores/as: Linares Linares, M.
Mendez Pérez, J. M.R.
Clasificación UNESCO: 1202 Análisis y análisis funcional
120218 Calculo operacional
Palabras clave: Complementary Hankel transformations
Generalized functions
Parseval equation
Fecha de publicación: 1992
Publicación seriada: International Journal of Mathematics and Mathematical Sciences 
Resumen: Four selfreciprocal integral transformations of Hankel type are defined through [formula omitted] where i = 1, 2, 3, 4; μ ≥ 0; α1(x) = x1 +2μ, g1,μ(x) = x−μJμ(x), Jμ(x) being the Bessel function of the first kind of order; μ; α2(x) = x1−2μ, g2,μ(x) =(−1)μx2μ g1,μ(x); α3(x) = x−1−2μ, g3,μ(x) = x1+2μ g1,μ(x), and α4(x) = x−1+2μ, g4,μ(x) = (−1)μx g1,μ(x). The simultaneous use of transformations H1,μ and H2,μ (which are denoted by Hμ) allows us to solve many problems of Mathematical Physics involving the differential operator Δμ = D2 + (1 + 2μ)x−1D, whereas the pair of transformations H3,μ and H4,μ (which we express by Hμ) permits us to tackle those problems containing its adjoint operator [formula omitted], no matter what the real value of μ be. These transformations are also investigated in a space of generalized functions according to the mixed Parseval equation [formula omitted], which is now valid for all real μ. © 1987, Hindawi Publishing Corporation. All rights reserved.
URI: http://hdl.handle.net/10553/73216
ISSN: 0161-1712
DOI: 10.1155/S0161171292000401
Fuente: International Journal of Mathematics and Mathematical Sciences [ISSN 0161-1712], v. 15 (2), p. 323-332, (Enero 1992)
Colección:Artículos
Vista completa
miniatura
PDF
Adobe PDF (2,55 MB)

Google ScholarTM

Verifica


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.