Please use this identifier to cite or link to this item:
http://hdl.handle.net/10553/72746
Title: | Orthogonal projections of the identity: spectral analysis and applications to approximate inverse preconditioning | Authors: | GonzáLez SáNchez, Luis | UNESCO Clasification: | 1206 Análisis numérico | Keywords: | Frobenius norm Orthogonal projection Eigenvalues Singular values Approximate inverse preconditioning |
Issue Date: | 2006 | Project: | Simulacion Numerica de Campos de Viento Orientados A Procesos Atmofericos. | Journal: | SIAM Review | Abstract: | Many strategies for constructing different structures of sparse approximate inverse preconditioners for large linear systems have been proposed in the literature. In a more general framework, this paper analyzes the theoretical effectiveness of the optimal preconditioner (in the Frobenius norm) of a linear system over an arbitrary subspace of M-n(R). For this purpose, the spectral analysis of the Frobenius orthogonal projections of the identity matrix onto the linear subspaces of M-n(R) is performed. This analysis leads to a simple, general criterion: The effectiveness of the optimal approximate inverse preconditioners (parametrized by any vectorial structure) improves at the same time as the smallest singular value (or the smallest eigenvalue's modulus) of the corresponding preconditioned matrices increases to 1. | URI: | http://hdl.handle.net/10553/72746 | ISSN: | 0036-1445 | DOI: | 10.1137/S0036144504431905 | Source: | Siam Review [ISSN 0036-1445], v. 48 (1), p. 66-75, (Marzo 2006) |
Appears in Collections: | Artículos |
SCOPUSTM
Citations
7
checked on Nov 17, 2024
WEB OF SCIENCETM
Citations
7
checked on Nov 17, 2024
Page view(s)
80
checked on Jul 13, 2024
Download(s)
116
checked on Jul 13, 2024
Google ScholarTM
Check
Altmetric
Share
Export metadata
Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.