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 Orthogonal Projections of the
 Identity: Spectral Analysis and
 Applications to Approximate
 Inverse Preconditioning*

 Luis GonzaIezt

 Abstract. Many strategies for constructing different structures of sparse approximate inverse precon
 ditioners for large linear systems have been proposed in the literature. In a more general
 framework, this paper analyzes the theoretical effectiveness of the optimal preconditioner
 (in the Frobenius norm) of a linear system over an arbitrary subspace of Mn (R). For
 this purpose, the spectral analysis of the Frobenius orthogonal projections of the identity
 matrix onto the linear subspaces of Mn (IR) is performed. This analysis leads to a simple,
 general criterion: The effectiveness of the optimal approximate inverse preconditioners
 (parametrized by any vectorial structure) improves at the same time as the smallest sin
 gular value (or the smallest eigenvalue's modulus) of the corresponding preconditioned
 matrices increases to 1.

 Key words. Frobenius norm, orthogonal projection, eigenvalues, singular values, approximate inverse
 preconditioning

 AMS subject classifications. 15A12, 15A18, 15A60, 65F35

 DOI. 10.1137/S0036144504431905

 1. Introduction. When a physical phenomenon is modeled by a partial differen
 tial equation (PDE), the discretization of this PDE by any adequate method (finite
 differences, finite elements, finite volumes, meshless, etc.) generally leads to a large
 system of linear equations,

 (1.1) Ax b, A C Rnxn x,b E Jnxl

 in which the matrix A is nonsingular and sparse, i.e., has relatively few nonvanishing
 elements.

 The solution of these linear systems is usually performed by iterative methods
 based on Krylov subspaces (see, e.g., [1, 20, 27, 32]). To improve the convergence of
 these Krylov methods, system (1.1) can be preconditioned with an adequate precon
 ditioning matrix N, transforming it into either of the equivalent problems

 (1.2) NAx = Nb,

 66
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 ORTHOGONAL PROJECTIONS OF THE IDENTITY 67

 (1.3) ANy = b, x = Ny,

 that is, the left and right preconditioned systems, respectively. In this paper we
 address only the case of right-hand side preconditioners (1.3), but analogous results
 can be obtained for the left-hand side preconditioners (1.2).

 Often, the preconditioning of system (1.1) is performed in order to get a pre
 conditioned matrix AN as close as possible to the identity in some sense, and the
 preconditioner N is called an approximate inverse of A. In some cases, the precon
 ditioners are parametrized by prescribed sparsity patterns, but we consider here a
 more general case of linear parametrization where the preconditioners belong to an
 arbitrary subspace S of Mn (R) [29]. The closeness of AN to I may be measured by
 using a suitable matrix norm like, for instance, the Frobenius norm FI IIF In this way,
 the problem of obtaining the best preconditioner N (with respect to the Frobenius
 norm) of system (1.1) in the subspace S of Mn (]R) is reduced to the minimization
 problem

 (1.4) minm |AM-IIF = IIAN-IIIF MES

 and the preconditioned matrix AN can be obtained by orthogonal projection of the
 identity onto the subspace AS. Here, and from now on, orthogonality is with respect
 to the Frobenius inner product (.- .)F' and we shall refer to the solution N to prob
 lem (1.4) as the "optimal" preconditioner of system (1.1) over the subspace S. So,
 throughout this paper, the term "optimal" means that the approximate inverse N is
 the matrix that minimizes the Frobenius norm on AN - I over a certain subspace S
 of Mn (IR), but the preconditioner N is not necessarily optimal in any other sense of
 the word.

 The search for approximate inverse preconditioners and, in general, the study
 of preconditioning strategies for large linear systems is at present one of the most
 relevant research areas in numerical linear algebra. In [5] we find a very complete
 survey about this question, and some of the most recent works in this area can be
 found, for instance, in [2, 3, 7, 8, 9, 14, 22, 23, 26, 30, 34] and in the references
 contained therein. Some of the first methods for constructing sparse approximate
 inverses that are best approximations in the Frobenius norm can be found in [4, 31]
 (see [1, p. 335], [5], [6] for a more detailed historical review of this question). Other
 posterior approaches in this sense are described, for instance, in [10, 13, 19, 21] and
 in the references therein. Recently, explicit expressions for both the preconditioner N
 defined by (1.4) and IIAN - IF' valid for any subspace S of Mn (IR), and applications
 of these formulas to the computation of sparse approximate inverses were presented in
 [29]. Moreover, in that work the general parametrization from arbitrary subspaces is
 illustrated with a natural generalization of the normal equations related to the system
 (1.1). The effect of ordering on the optimal sparse approximate inverse preconditioners
 has been studied from both theoretical and experimental points of view in [17]. Among
 other Frobenius norm minimization preconditioners not extracted from sparse matrix
 subspaces, we must mention here the preconditioners for structured matrices obtained
 by orthogonal projections onto unitary matrix algebras (like, for instance, circulant
 preconditioners for Toeplitz matrices); see, e.g., [12, 15, 33] and the references therein.

 With a more general and simple formulation, problem (1.4) can be written as

 (1.5) i np - 'HIIF = IIQ - IHF'
 where T is an arbitrary subspace of Mn (R). Note that, in our context, problems (1.4)
 and (1.5) are indeed equivalent, since A is nonsingular, and for T-=AS problem (1.5)
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 68 LUIS GONZALEZ

 becomes problem (1.4) with solution Q - AN, so that the results we obtain for (1.5)
 will be, in particular, valid for (1.4).

 The results about preconditioning contained in this work are limited to precondi
 tioners of the approximate inverse type obtained from Frobenius norm minimization
 (over an arbitrary subspace of Mn (R)). In this context, the main goal of this paper
 is to establish a simple, unified criterion that allows us to estimate the theoretical
 effectiveness of the optimal preconditioners N, for all possible subspaces S of Mn (R).
 For this purpose, the remainder of the paper has been organized as follows. In section
 2, we establish some spectral properties of the solution Q to problem (1.5), i.e., the
 orthogonal projection of the identity onto an arbitrary subspace T of Mn (ER). In sec
 tion 3, we apply these general results to the effectiveness analysis of the approximate
 inverse preconditioners N defined by problem (1.4). Finally, in section 4 we present
 our conclusions.

 2. Orthogonal Projections of the Identity. The following two lemmas charac
 terize the best approximation to the identity matrix from an arbitrary subspace T of

 Mn (R).
 LEMMA 2.1. Let T be a vector subspace of Mn (R). Then the solution to problem

 (1.5) satisfies

 (2.1) tr (QPT) = tr (P) VP c T,

 (2.2) IIQ-I_ 11= n -tr (Q).
 Moreover,

 (2.3) IIQI|F =tr (Q) .
 Proof. Using the orthogonal projection theorem, we have

 (2.4) (Q-I, P)F = ? VP e T,
 which is equivalent to (2.1). Next, from (2.4), we get

 IQIIF = (Q-I Q)F + (IQ, I)F=n-r()
 and finally, (2.3) is (2.1) for P = Q. U

 Remark 1. From (2.2) and (2.3) we get the following bounds for the trace of the
 orthogonal projections of the identity:

 (2.5) 0 < tr (Q) < n.

 Different explicit expressions can be given for Q, but for the purpose of this paper
 the following simple expression is enough.

 LEMMA 2.2. Let T be a vector subspace of Mn (R) of dimension d and let {Pi}ld
 be an orthogonal basis of T. Then the solution to problem (1.5) is

 (2.6) Q Ztr(pz)P.

 (2.7) TI - n -_ v[tr (Pi)]2
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 ORTHOGONAL PROJECTIONS OF THE IDENTITY 69

 Proof. Representing Q by its expansion with respect to the orthonormal basis

 {-F }d of T, we obtain

 Q=E (,2) Pi
 and from (2.2) and (2.6) we get (2.7). L
 Now we develop the spectral analysis of the orthogonal projection Q. In the

 following, we shall denote by {Ai}l' 1 and { i}I'1 the sets of eigenvalues and singular
 values, respectively, of Q arranged, as usual, in nonincreasing order. So, denoting by
 r the rank of Q, that is, the number of its nonzero singular values, and by m the
 number of its nonzero eigenvalues, we have

 (2.8) A11 > ...> ?ml > cAm+11= = Anl -=O
 (J1 > ... > a, > a,+, = *- n = Oi

 and the well-known inequality [25, p. 181]

 (2.9) 0 < m < r < n, Q = Onxn iff 0 = m =r, Q nonsingular iff m = r = n.

 LEMMA 2.3. Let T be a vector subspace of Mn (R) and Q the solution to problem
 (1.5) with rank(Q) = r (1 < r < n). Then

 r r

 (2.10) or2= YAi.
 i=1 i=1

 Proof. Using (2.3) and taking into account that

 r m r

 Q = tr (QQT) =Z c2 tr (Q) =ZAi =ZAi,
 i=l i=1 i=1

 the proof is straightforward. [
 LEMMA 2.4. Let T be a vector subspace of Mn (R) and Q the solution to problem

 (1.5) with rank(Q) =r (1 < r < n). Then
 r rr r r r

 (2.11) ZA2 < E Z A12 < a? Ai < E lAil < ? ri.
 il i=l i=l i=l i=l i=l

 Proof. First, note that the above chain of inequalities makes sense because Q

 is a real matrix, and then E'A2 - tr (Q2), ZrIAi = tr (Q) are real numbers.
 The central equality is (2.10). While this equality is a consequence of the orthogonal
 projection condition of Q, the four inequalities in (2.11) are valid for any square real
 matrix. Indeed, the first and third inequalities hold because of the triangle inequality
 for modulus. The second and fourth inequalities hold because of the additive Weyl's
 inequalities [25, p. 176], [35]

 k k

 lAilp < EuP (p>O) k=1, ...n) i=l i=l

 for p =2,l1andk =r. [1
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 70 LUIS GONZALEZ

 From the last lemma we immediately obtain the following spectral property of
 the orthogonal projections of the identity.
 THEOREM 2.5. The smallest nonzero singular value and the smallest nonzero

 eigenvalue's modulus of the orthogonal projection of the identity onto any subspace of
 Mn (IR) are never greater than 1.

 Proof. From (2.11) we get

 2 <

 Ecr2 <ZE i => ufr < 1
 i=l i=1

 and
 r r m m

 IAi 12 < E Ii Z IAiE 12? < ZIiI => IAmI<1. - i
 i=l i=l i=l i=l

 Nothing can be asserted about the rest of the nonzero singular values and the
 eigenvalue's modulus of Q, which can be greater than, equal to, or less than unity, as
 the following counterexample shows.
 Example 1. Let us fix k E R and consider the following subspace of M2 (R):

 Tk=span{(k 0)}.

 The solution Qk to problem (1.5) for subspace Tk can be obtained by using formula
 (2.6) as follows:

 Qk = ( ) ( k O 0 k + 1 (k O

 Then we get

 { k=-2: 1Al = l 2 < I A21 U2= <1

 k = 1: IAi I = Ti = 1, IA21 2 = 1 <= 1,

 k =-2: |A1 = or, 6>, 1 ) I21C2 = 3 <.

 The next lemma provides us with lower and upper bounds on IIQ - IIIF involving
 ur and Am.

 LEMMA 2.6. Let T be a vector subspace of Mn (R) and Q the solution to problem
 (1.5) with rank (Q) = r (1 < r < n). Let m be the number of nonzero eigenvalues of
 Q and suppose that m > 1. Then

 (2.13) n-rm+?(1-AmD)2 < IIQ- _ r a2),
 (2.12) n-m r + (1-l Ur1) < II-|F< n -r + r (1-m r 2
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 Proof. The left-hand inequalities are valid for any square real matrix (the orthog
 onal projection condition of Q is not required here). Indeed, from (2.11) we have

 r r r r

 IIQ-IIIF Q -2tr (Q) + n =Z -2ZAi + n > Eci-2Eui + n

 (2.14) =n-r+Z(r 1- i)2 > n-r+ (r -Ur)2.
 i=l

 Next, from Schur's inequality [1, p. 631] for matrix Q - I, we get

 n m

 Q-IIQ Z > lAi-_12 =n-m+Z 1-Ai2 > n-m+ (1- Am1)2.

 To prove the right-hand inequalities (a consequence of the orthogonal projection con
 dition of Q), we use (2.2), (2.3), and (2.11):

 r r m
 IQ-IQ _ 11 -tr (Q) = n -||Q||F a 2< n- E Ai12 =n-E 12

 i-1 i=l i-1

 Then we get, on one hand,

 IIQ -_ m-r1+2r- 2m - r + r (1-7r2)
 i- 1

 and, on the other hand,

 m

 IIQ-_A12 < n-m+m)-E lAi2 < n- ml2)A . a
 i=l1

 3. Applications to the Approximate Inverse Preconditioning. In the context
 of the preconditioning (1.3) of system (1.1), it is obvious that the preconditioner
 N must be nonsingular in order to obtain a nonsingular preconditioned matrix AN
 (recall that we have assumed that the coefficient matrix A is nonsingular). So, in order
 to apply the results of section 2 to the special case Q = AN, from now on {Ai
 and {ail}> will denote the sets of eigenvalues and singular values, respectively, of
 matrix AN and, according to (2.9), equation (2.8) is now rewritten as

 AI1I > ..A > lAn> > > c?... > a, > ?.

 3.1. The Matrix Residual Norm. Assuming that matrix AN is nonsingular, The
 orem 2.5 assures in this special case that a7n, lAn E ]O, 1]. The following theorem
 establishes the tight relation between the matrix residual norm IIAN - IIF and the
 closeness of orn ( A| )) to unity.

 THEOREM 3. 1. Let A E Mn (R) be nonsingular and S a vector subspace of Mn (R)
 such that the solution N to problem (1.4) is nonsingular. Then

 (3.1) (1 -lAnl) 2 (1-7n)2 < IIAN- 1112 < n I1-An 12) < (1 2).

 Proof. Using (2.12) and (2.13) for Q =AN, m = r = m, and the well-known
 inequality on ? lAn [25, p. 191], the proof is straightforward. [1
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 72 LUIS GONZALEZ

 Remark 2. Theorem 3.1 states that JJAN - lF decreases to 0 at the same time
 as the smallest singular value (or the smallest eigenvalue's modulus) of the precondi
 tioned matrix AN increases to 1. In other words, we get a good approximate inverse
 N of A when own (lAnl) is sufficiently close to 1. Of course, the optimal theoretical
 situation corresponds to the case

 (Jn - =~ N N= A-' (i.e., A-' E S) 4=~An = 1.

 3.2. Theoretical Effectiveness of the Optimal Preconditioners. Usually, in
 works about preconditioning, the theoretical effectiveness analysis of the new pro
 posed preconditioners is performed. Essential properties for the convergence of most
 iterative methods are the clustering at 1 of eigenvalues and singular values, the con
 dition number, and the departure from normality of the preconditioned linear system
 (see, e.g., [18, 21]). In this subsection we analyze the effectiveness of the precondition
 ers N defined by problem (1.4) showing that we can reduce the analysis of the four

 above parameters to the distance from cn (I An ) to unity. Indeed, we shall prove that
 if any of these two values is close to 1, then the preconditioner N has good behavior
 with respect to all these four points.

 Let us illustrate in an intuitive way the basic idea that explains this fact. Obvi
 ously, for a square matrix, the closeness to 1 of its smallest singular value does not
 imply, in general, the clustering at 1 of the whole set of its singular values: oan can
 be close to 1, while the rest of the singular values can be very far from 1. However,
 this cannot happen for the full-rank orthogonal projections Q of the identity (as the
 nonsingular preconditioned matrices AN). Indeed, using (2.3) and (2.5) for Q = AN,
 we get

 n

 (3.2) U2 =IANf11= tr (AN) < n ( > ...?> n > On, n < 1)
 i=l1

 and then the closeness to 1 of own implies here the clustering at 1 of singular values. In
 the extreme case, if Un = 1, then all the singular values necessarily equal 1. Moreover,
 it is well known that the spectral condition number coincides with the ratio " of the
 largest to the smallest singular value [24, p. 442], and hence from (3.2) we also get
 the following intuitive conclusion: The closer on is to 1, the closer a, is to on, and
 therefore the closer the spectral condition number is to 1.

 Now we rigorously expose these intuitive ideas in the next theorem (a consequence
 of Theorem 3.1), which summarizes the behavior of the above-mentioned four param
 eters in relation to o7n and An. For estimating the AN's departure from normality we
 use a scale-invariant measure of nonnormality (i.e., invariant under multiplication of
 the matrix by a constant) as the Henrici number [11]

 AN (AN)T _ (AN)T AN|
 He (AN) F )

 (AN)F

 and to obtain alternative estimations using other measures of nonnormality, one can
 use the inequalities that compare different measures with the numerator of He (AN)
 (see, e.g., [16]) .
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 THEOREM 3.2. Let A e Mn (IR) be nonsingular and S a vector subspace of M, (R)
 such that the solution N to problem (1.4) is nonsingular. Then

 (3 3) - Ai2 1 2 < A 2 72

 (1-_ oi)2 < 1-| 2 < 1 2
 i=l1

 (3 5) (AN) <In[--(n -1) a 2] 2 [n - (n -1) lAn lq (3.5) K2 (AN) ? n K for somneq q>1

 [2n (1- An 4)]2 [2n ( 1 a 4)
 (3.6) He(AN) < A2 < n

 Proof. To prove (3.3) (clustering of eigenvalues) it is sufficient to use Schur's
 inequality [1, p. 631] for matrix AN - I and (3.1):

 n

 lAi 12 IIAN -IF < n (1- AI2) < n (1n-cr)

 To prove (3.4) (clustering of singular values) we use (2.14) for Q = AN, r = n and
 (3.1):

 n

 ( (1_ci)2 < ||AN - 11 < n (1 - An12) < n (1U-2).

 To prove the first inequality of (3.5) (condition number) we just use (3.2):

 n n

 9i_ <n n n- c 2<n-(n-1) Jn
 i=1 i=2

 Hence

 K-2 (AN) ? 1 < ?
 7n a7n

 For the second inequality, note that we can suppose that lAnf ? 1 since, otherwise,
 from (3.1) we have that AN is the identity matrix and then the three quantities in
 (3.5) are obviously equal to 1. Hence, using Theorem 2.5 we have

 ? < Un -< |Anj < I => 3 q > I s.t. lAn I < (7ni

 which concludes the proof of (3.5).
 To prove (3.6) (measure of nonnormality), using the inequality (see, e.g., [16, 28])

 AN (AN)T)T A (AN) AN ? [2 (lANfl - (z AI) 2)1 1
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 74 LUIS GONZALEZ

 Schur's inequality [1, p. 631] for matrix (AN)2, and (3.2), we have

 [2K2 2)2~~~1 K2(r\21

 [2 (An 2] 2 [ )1n [ (1Jn

 Remark 3. Theorem 3.2 has shown that when crn (or lAn) increases to 1, all four
 classical parameters for the convergence of iterative methods improve their behavior.
 More precisely, the left-hand sides of (3.3), (3.4), and the Henrici number He (AN)
 decrease to 0 while the spectral condition number /C2 (AN) decreases to 1.

 Remark 4. Of course, the purpose of the last two theorems is to provide theoretical
 results (on and l are not known and in practice they will almost always be very
 small) which reduce the effectiveness analysis of the preconditioners N to an unique

 critical quantity (CTn or I A2( 4
 4. Conclusions. The spectral analysis of the Frobenius orthogonal projections

 of the identity has determined the following results for the optimal preconditioners
 N of a linear system, Ax =b, defined by (1.4): The smallest singular value oRn
 and the smallest eigenvalue's modulus lAn of the preconditioned matrix AN are
 never greater than 1 (Theorem 2.5) and they increase to 1 at the same time as the
 matrix residual norm [AN - lF decreases to zero (Theorem 3.1). Moreover, when
 CJn (l An) is close to 1, the preconditioner N improves on the four classical parameters
 for the convergence of iterative methods: clustering of eigenvalues and singular values,
 condition number, and departure from normality of the preconditioned linear system

 (Theorem 3.2). In this way, the closeness to 1 of In (AnJ) has been identified as a
 simple, general criterion for determining the theoretical efectiveness of the Frobenius
 norm-based approximate inverse preconditioners N parametrized by any vectorial
 structure (not restricted to sparsity patterns).

 Acknowledgment. The author would like to thank the anonymous refrees for
 their many helpful suggestions and detailed comments, which substantially improved
 the quality of the first version of this paper.
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