Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/72746
DC FieldValueLanguage
dc.contributor.authorGonzáLez SáNchez, Luisen_US
dc.date.accessioned2020-05-23T17:52:59Z-
dc.date.available2020-05-23T17:52:59Z-
dc.date.issued2006en_US
dc.identifier.issn0036-1445en_US
dc.identifier.otherWoS-
dc.identifier.urihttp://hdl.handle.net/10553/72746-
dc.description.abstractMany strategies for constructing different structures of sparse approximate inverse preconditioners for large linear systems have been proposed in the literature. In a more general framework, this paper analyzes the theoretical effectiveness of the optimal preconditioner (in the Frobenius norm) of a linear system over an arbitrary subspace of M-n(R). For this purpose, the spectral analysis of the Frobenius orthogonal projections of the identity matrix onto the linear subspaces of M-n(R) is performed. This analysis leads to a simple, general criterion: The effectiveness of the optimal approximate inverse preconditioners (parametrized by any vectorial structure) improves at the same time as the smallest singular value (or the smallest eigenvalue's modulus) of the corresponding preconditioned matrices increases to 1.en_US
dc.languageengen_US
dc.relationSimulacion Numerica de Campos de Viento Orientados A Procesos Atmofericos.en_US
dc.relation.ispartofSIAM Reviewen_US
dc.sourceSiam Review [ISSN 0036-1445], v. 48 (1), p. 66-75, (Marzo 2006)en_US
dc.subject1206 Análisis numéricoen_US
dc.subject.otherFrobenius normen_US
dc.subject.otherOrthogonal projectionen_US
dc.subject.otherEigenvaluesen_US
dc.subject.otherSingular valuesen_US
dc.subject.otherApproximate inverse preconditioningen_US
dc.titleOrthogonal projections of the identity: spectral analysis and applications to approximate inverse preconditioningen_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1137/S0036144504431905en_US
dc.identifier.scopus33644585868-
dc.identifier.isi000235585900003-
dc.contributor.authorscopusid7202218949-
dc.identifier.eissn1095-7200-
dc.description.lastpage75en_US
dc.identifier.issue1-
dc.description.firstpage66en_US
dc.relation.volume48en_US
dc.investigacionCienciasen_US
dc.type2Artículoen_US
dc.contributor.daisngid1802854-
dc.description.numberofpages10en_US
dc.utils.revisionen_US
dc.contributor.wosstandardWOS:Gonzalez, L-
dc.date.coverdateMarzo 2006en_US
item.fulltextCon texto completo-
item.grantfulltextopen-
crisitem.author.deptDepartamento de Matemáticas-
crisitem.author.deptSIANI: Modelización y Simulación Computacional-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.fullNameGonzález Sánchez, Luis-
crisitem.author.departamentoMatemáticas-
Appears in Collections:Artículos
Thumbnail
PDF
Adobe PDF (945,18 kB)
Show simple item record

SCOPUSTM   
Citations

7
checked on Jun 29, 2020

WEB OF SCIENCETM
Citations

7
checked on Jun 29, 2020

Page view(s)

21
checked on Jun 27, 2020

Download(s)

3
checked on Jun 27, 2020

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.