Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/72746
Campo DC | Valor | idioma |
---|---|---|
dc.contributor.author | GonzáLez SáNchez, Luis | en_US |
dc.date.accessioned | 2020-05-23T17:52:59Z | - |
dc.date.available | 2020-05-23T17:52:59Z | - |
dc.date.issued | 2006 | en_US |
dc.identifier.issn | 0036-1445 | en_US |
dc.identifier.other | WoS | - |
dc.identifier.uri | http://hdl.handle.net/10553/72746 | - |
dc.description.abstract | Many strategies for constructing different structures of sparse approximate inverse preconditioners for large linear systems have been proposed in the literature. In a more general framework, this paper analyzes the theoretical effectiveness of the optimal preconditioner (in the Frobenius norm) of a linear system over an arbitrary subspace of M-n(R). For this purpose, the spectral analysis of the Frobenius orthogonal projections of the identity matrix onto the linear subspaces of M-n(R) is performed. This analysis leads to a simple, general criterion: The effectiveness of the optimal approximate inverse preconditioners (parametrized by any vectorial structure) improves at the same time as the smallest singular value (or the smallest eigenvalue's modulus) of the corresponding preconditioned matrices increases to 1. | en_US |
dc.language | eng | en_US |
dc.relation | Simulacion Numerica de Campos de Viento Orientados A Procesos Atmofericos. | en_US |
dc.relation.ispartof | SIAM Review | en_US |
dc.source | Siam Review [ISSN 0036-1445], v. 48 (1), p. 66-75, (Marzo 2006) | en_US |
dc.subject | 1206 Análisis numérico | en_US |
dc.subject.other | Frobenius norm | en_US |
dc.subject.other | Orthogonal projection | en_US |
dc.subject.other | Eigenvalues | en_US |
dc.subject.other | Singular values | en_US |
dc.subject.other | Approximate inverse preconditioning | en_US |
dc.title | Orthogonal projections of the identity: spectral analysis and applications to approximate inverse preconditioning | en_US |
dc.type | info:eu-repo/semantics/Article | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1137/S0036144504431905 | en_US |
dc.identifier.scopus | 33644585868 | - |
dc.identifier.isi | 000235585900003 | - |
dc.contributor.authorscopusid | 7202218949 | - |
dc.identifier.eissn | 1095-7200 | - |
dc.description.lastpage | 75 | en_US |
dc.identifier.issue | 1 | - |
dc.description.firstpage | 66 | en_US |
dc.relation.volume | 48 | en_US |
dc.investigacion | Ciencias | en_US |
dc.type2 | Artículo | en_US |
dc.contributor.daisngid | 1802854 | - |
dc.description.numberofpages | 10 | en_US |
dc.utils.revision | Sí | en_US |
dc.contributor.wosstandard | WOS:Gonzalez, L | - |
dc.date.coverdate | Marzo 2006 | en_US |
dc.identifier.ulpgc | Sí | es |
dc.description.jcr | 2,667 | |
dc.description.jcrq | Q1 | |
dc.description.scie | SCIE | |
item.grantfulltext | open | - |
item.fulltext | Con texto completo | - |
crisitem.author.dept | Departamento de Matemáticas | - |
crisitem.author.fullName | González Sánchez, Luis | - |
crisitem.project.principalinvestigator | Montenegro Armas, Rafael | - |
Colección: | Artículos |
Citas SCOPUSTM
7
actualizado el 24-nov-2024
Citas de WEB OF SCIENCETM
Citations
7
actualizado el 24-nov-2024
Visitas
103
actualizado el 30-nov-2024
Descargas
132
actualizado el 30-nov-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.