Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/72746
Campo DC Valoridioma
dc.contributor.authorGonzáLez SáNchez, Luisen_US
dc.date.accessioned2020-05-23T17:52:59Z-
dc.date.available2020-05-23T17:52:59Z-
dc.date.issued2006en_US
dc.identifier.issn0036-1445en_US
dc.identifier.otherWoS-
dc.identifier.urihttp://hdl.handle.net/10553/72746-
dc.description.abstractMany strategies for constructing different structures of sparse approximate inverse preconditioners for large linear systems have been proposed in the literature. In a more general framework, this paper analyzes the theoretical effectiveness of the optimal preconditioner (in the Frobenius norm) of a linear system over an arbitrary subspace of M-n(R). For this purpose, the spectral analysis of the Frobenius orthogonal projections of the identity matrix onto the linear subspaces of M-n(R) is performed. This analysis leads to a simple, general criterion: The effectiveness of the optimal approximate inverse preconditioners (parametrized by any vectorial structure) improves at the same time as the smallest singular value (or the smallest eigenvalue's modulus) of the corresponding preconditioned matrices increases to 1.en_US
dc.languageengen_US
dc.relationSimulacion Numerica de Campos de Viento Orientados A Procesos Atmofericos.en_US
dc.relation.ispartofSIAM Reviewen_US
dc.sourceSiam Review [ISSN 0036-1445], v. 48 (1), p. 66-75, (Marzo 2006)en_US
dc.subject1206 Análisis numéricoen_US
dc.subject.otherFrobenius normen_US
dc.subject.otherOrthogonal projectionen_US
dc.subject.otherEigenvaluesen_US
dc.subject.otherSingular valuesen_US
dc.subject.otherApproximate inverse preconditioningen_US
dc.titleOrthogonal projections of the identity: spectral analysis and applications to approximate inverse preconditioningen_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1137/S0036144504431905en_US
dc.identifier.scopus33644585868-
dc.identifier.isi000235585900003-
dc.contributor.authorscopusid7202218949-
dc.identifier.eissn1095-7200-
dc.description.lastpage75en_US
dc.identifier.issue1-
dc.description.firstpage66en_US
dc.relation.volume48en_US
dc.investigacionCienciasen_US
dc.type2Artículoen_US
dc.contributor.daisngid1802854-
dc.description.numberofpages10en_US
dc.utils.revisionen_US
dc.contributor.wosstandardWOS:Gonzalez, L-
dc.date.coverdateMarzo 2006en_US
dc.identifier.ulpgces
dc.description.jcr2,667
dc.description.jcrqQ1
dc.description.scieSCIE
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.author.deptDepartamento de Matemáticas-
crisitem.author.fullNameGonzález Sánchez, Luis-
crisitem.project.principalinvestigatorMontenegro Armas, Rafael-
Colección:Artículos
miniatura
PDF
Adobe PDF (945,18 kB)
Vista resumida

Citas SCOPUSTM   

7
actualizado el 24-nov-2024

Citas de WEB OF SCIENCETM
Citations

7
actualizado el 24-nov-2024

Visitas

103
actualizado el 30-nov-2024

Descargas

132
actualizado el 30-nov-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.