Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/72656
DC FieldValueLanguage
dc.contributor.authorMoure, Juan C.en_US
dc.contributor.authorBenítez, Domingoen_US
dc.contributor.authorRexachs, Dolores I.en_US
dc.contributor.authorLuque, Emilioen_US
dc.date.accessioned2020-05-20T09:27:35Z-
dc.date.available2020-05-20T09:27:35Z-
dc.date.issued2006en_US
dc.identifier.isbn978-1-59593-282-2en_US
dc.identifier.otherScopus-
dc.identifier.urihttp://hdl.handle.net/10553/72656-
dc.description.abstractHigh prediction bandwidth enables performance improvements and power reduction techniques. This paper explores a mechanism to increase prediction width (instructions per prediction) by predicting instruction traces. Our analysis shows that predicting traces including multiple branches is not significantly less accurate than predicting single branches. A novel Local Trace Predictor organization is proposed. It increases prediction width without reducing the ratio of prediction accuracy versus memory resources with respect to a Basic Block Predictor.Compared to the previously proposed Next-Trace Predictor, the Local Trace Predictor reduces memory requirements by codifying trace predictions, and by limiting the number of traces starting at the same instruction to 2 or 4. The limit lessens prediction width only slightly, and does not affect prediction accuracy. The overall result is that the Local Trace Predictor outperforms the Next-Trace Predictor for sizes higher than 12 KBytes.en_US
dc.languageengen_US
dc.sourceProceedings of the International Conference on Supercomputing, p. 55-65, (Diciembre 2006)en_US
dc.subject1203 Ciencia de los ordenadoresen_US
dc.subject330406 Arquitectura de ordenadoresen_US
dc.subject.otherBranch Predictionen_US
dc.subject.otherHigh Bandwidth Fetch Mechanismen_US
dc.titleWide and efficient trace prediction using the local trace predictoren_US
dc.typeinfo:eu-repo/semantics/conferenceObjecten_US
dc.typeConferenceObjecten_US
dc.relation.conference20th Annual International Conference on Supercomputing, ICS 2006en_US
dc.identifier.doi10.1145/1183401.1183411en_US
dc.identifier.scopus34547409308-
dc.contributor.authorscopusid57188672353-
dc.contributor.authorscopusid7003286582-
dc.contributor.authorscopusid6506076654-
dc.contributor.authorscopusid7005407181-
dc.description.lastpage65en_US
dc.description.firstpage55en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Actas de congresosen_US
dc.utils.revisionNoen_US
dc.date.coverdateDiciembre 2006en_US
dc.identifier.conferenceidevents121323-
dc.identifier.ulpgces
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.author.deptGIR SIANI: Modelización y Simulación Computacional-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.orcid0000-0003-2952-2972-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.fullNameBenítez Díaz, Domingo Juan-
crisitem.event.eventsstartdate28-06-2006-
crisitem.event.eventsenddate01-07-2006-
Appears in Collections:Actas de congresos
Show simple item record

Page view(s)

103
checked on Nov 23, 2024

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.