Please use this identifier to cite or link to this item:
Title: Automatic prognostic determination and evolution of cognitive decline using artificial neural networks
Authors: García Báez, Patricio 
Suárez Araujo, Carmen Paz 
Fernández Viadero,Carlos 
Regidor García,José 
UNESCO Clasification: 120304 Inteligencia artificial
3201 Ciencias clínicas
Issue Date: 2007
Project: Hacia Un Prototipo de Sistema Computacional de Inteligente de Ayuda Al Diagnóstico Del Deterioro Cognitivo Leve (Dcl) y de la Enfermedad de Alzheimer y Otras Demencias. 
Journal: Lecture Notes in Computer Science 
Conference: 8th International Conference on Intelligent Data Engineering and Automated Learning 
Abstract: This work tries to go a step further in the development of methods based on automatic learning techniques to parse and interpret data relating to cognitive decline (CD). There have been studied the neuropsychological tests of 267 consultations made over 30 patients by the Alzheimer's Patient Association of Gran Canaria in 2005. The Sanger neural network adaptation for missing values treatment has allowed making a Principal Components Analysis (PCA) on the successfully obtained data. The results show that the first three obtained principal components are able to extract information relating to functional, cognitive and instrumental sintomatology, respectively, from the test. By means of these techniques, it is possible to develop tools that allow physicians to quantify, view and make a better pursuit of the sintomatology associated to the cognitive decline processes, contributing to a better knowledge of these ones.
ISBN: 978-3-540-77225-5
ISSN: 0302-9743
DOI: 10.1007/978-3-540-77226-2_90
Source: Yin H., Tino P., Corchado E., Byrne W., Yao X. (eds) Intelligent Data Engineering and Automated Learning - IDEAL 2007. Lecture Notes in Computer Science, [ISSN 0302-9743], vol 4881, p. 898-907, (2007). Springer, Berlin, Heidelberg.
Appears in Collections:Actas de congresos
Show full item record


checked on Jul 25, 2021


checked on Jul 25, 2021

Page view(s)

checked on Jun 20, 2021

Google ScholarTM




Export metadata

Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.