Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/72591
Título: Automatic prognostic determination and evolution of cognitive decline using artificial neural networks
Autores/as: García Báez, Patricio 
Suárez Araujo, Carmen Paz 
Fernández Viadero,Carlos 
Regidor García,José 
Clasificación UNESCO: 120304 Inteligencia artificial
3201 Ciencias clínicas
Fecha de publicación: 2007
Proyectos: Hacia Un Prototipo de Sistema Computacional de Inteligente de Ayuda Al Diagnóstico Del Deterioro Cognitivo Leve (Dcl) y de la Enfermedad de Alzheimer y Otras Demencias. 
Publicación seriada: Lecture Notes in Computer Science 
Conferencia: 8th International Conference on Intelligent Data Engineering and Automated Learning 
Resumen: This work tries to go a step further in the development of methods based on automatic learning techniques to parse and interpret data relating to cognitive decline (CD). There have been studied the neuropsychological tests of 267 consultations made over 30 patients by the Alzheimer's Patient Association of Gran Canaria in 2005. The Sanger neural network adaptation for missing values treatment has allowed making a Principal Components Analysis (PCA) on the successfully obtained data. The results show that the first three obtained principal components are able to extract information relating to functional, cognitive and instrumental sintomatology, respectively, from the test. By means of these techniques, it is possible to develop tools that allow physicians to quantify, view and make a better pursuit of the sintomatology associated to the cognitive decline processes, contributing to a better knowledge of these ones.
URI: http://hdl.handle.net/10553/72591
ISBN: 978-3-540-77225-5
ISSN: 0302-9743
DOI: 10.1007/978-3-540-77226-2_90
Fuente: Yin H., Tino P., Corchado E., Byrne W., Yao X. (eds) Intelligent Data Engineering and Automated Learning - IDEAL 2007. Lecture Notes in Computer Science, [ISSN 0302-9743], vol 4881, p. 898-907, (2007). Springer, Berlin, Heidelberg.
Colección:Actas de congresos
Vista completa

Citas SCOPUSTM   

10
actualizado el 17-nov-2024

Citas de WEB OF SCIENCETM
Citations

5
actualizado el 25-feb-2024

Visitas

86
actualizado el 19-oct-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.