Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/72511
Título: | A Bayesian dichotomous model with asymmetric link for fraud in insurance | Autores/as: | Bermudez, Ll. Perez, J. M. Ayuso, M. Gómez Déniz, Emilio Vázquez Polo, Francisco José |
Clasificación UNESCO: | 530202 Modelos econométricos | Palabras clave: | Bayesian Statistics Logit Model Gibbs Sampling Automobile Insurance Fraud |
Fecha de publicación: | 2008 | Publicación seriada: | Insurance: Mathematics and Economics | Resumen: | Standard binary models have been developed to describe the behavior of consumers when they are faced with two choices. The classical logit model presents the feature of the symmetric link function. However, symmetric links do not provide good fits for data where one response is much more frequent than the other (as it happens in the insurance fraud context). In this paper, we use an asymmetric or skewed logit link, proposed by Chen et al. [Chen, M., Dey, D., Shao, Q., 1999. A new skewed link model for dichotomous quantal response data. J. Amer. Statist. Assoc. 94 (448), 1172-1186], to fit a fraud database from the Spanish insurance market. Bayesian analysis of this model is developed by using data augmentation and Gibbs sampling. The results show that the use of an asymmetric link notably improves the percentage of cases that are correctly classified after the model estimation. (C) 2007 Elsevier B.V. All rights reserved. | URI: | http://hdl.handle.net/10553/72511 | ISSN: | 0167-6687 | DOI: | 10.1016/j.insmatheco.2007.08.002 | Fuente: | Insurance Mathematics & Economics[ISSN 0167-6687],v. 42 (2), p. 779-786, (Abril 2008) |
Colección: | Artículos |
Citas SCOPUSTM
53
actualizado el 15-dic-2024
Citas de WEB OF SCIENCETM
Citations
45
actualizado el 15-dic-2024
Visitas
49
actualizado el 03-ago-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.