Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/72511
Título: A Bayesian dichotomous model with asymmetric link for fraud in insurance
Autores/as: Bermudez, Ll.
Perez, J. M.
Ayuso, M.
Gómez Déniz, Emilio 
Vázquez Polo, Francisco José 
Clasificación UNESCO: 530202 Modelos econométricos
Palabras clave: Bayesian Statistics
Logit Model
Gibbs Sampling
Automobile Insurance
Fraud
Fecha de publicación: 2008
Publicación seriada: Insurance: Mathematics and Economics 
Resumen: Standard binary models have been developed to describe the behavior of consumers when they are faced with two choices. The classical logit model presents the feature of the symmetric link function. However, symmetric links do not provide good fits for data where one response is much more frequent than the other (as it happens in the insurance fraud context). In this paper, we use an asymmetric or skewed logit link, proposed by Chen et al. [Chen, M., Dey, D., Shao, Q., 1999. A new skewed link model for dichotomous quantal response data. J. Amer. Statist. Assoc. 94 (448), 1172-1186], to fit a fraud database from the Spanish insurance market. Bayesian analysis of this model is developed by using data augmentation and Gibbs sampling. The results show that the use of an asymmetric link notably improves the percentage of cases that are correctly classified after the model estimation. (C) 2007 Elsevier B.V. All rights reserved.
URI: http://hdl.handle.net/10553/72511
ISSN: 0167-6687
DOI: 10.1016/j.insmatheco.2007.08.002
Fuente: Insurance Mathematics & Economics[ISSN 0167-6687],v. 42 (2), p. 779-786, (Abril 2008)
Colección:Artículos
Vista completa

Citas SCOPUSTM   

54
actualizado el 30-mar-2025

Citas de WEB OF SCIENCETM
Citations

46
actualizado el 30-mar-2025

Visitas

71
actualizado el 28-dic-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.