Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/70371
DC FieldValueLanguage
dc.contributor.authorUreña Gómez-Moreno, Pedroen_US
dc.contributor.authorMestre-Mestre, Eva M.en_US
dc.date.accessioned2020-02-19T15:40:49Z-
dc.date.available2020-02-19T15:40:49Z-
dc.date.issued2017en_US
dc.identifier.issn1133-1127en_US
dc.identifier.urihttp://hdl.handle.net/10553/70371-
dc.description.abstractAt the current rate of technological development, in a world where enormous amount of data are constantly created and in which the Internet is used as the primary means for information exchange, there exists a need for tools that help processing, analyzing and using that information. However, while the growth of information poses many opportunities for social and scientific advance, it has also highlighted the difficulties of extracting meaningful patterns from massive data. Ontologies have been claimed to play a major role in the processing of large-scale data, as they serve as universal models of knowledge representation, and are being studied as possible solutions to this. This paper presents a method for the automatic expansion of ontologies based on corpus and terminological data exploitation. The proposed “ontology enrichment method” (OEM) consists of a sequence of tasks aimed at classifying an input keyword automatically under its corresponding node within a target ontology. Results prove that the method can be successfully applied for the automatic classification of specialized units into a reference ontology.en_US
dc.languageengen_US
dc.relation.ispartofLFE. Revista de Lenguas para Fines Específicosen_US
dc.sourceLFE. Revista de lenguas para fines específicos [eISSN 2340-8561], v. 23 (2), p. 63-85en_US
dc.subject570107 Lengua y literaturaen_US
dc.subject550510 Filologíaen_US
dc.subject.otherOntology learningen_US
dc.subject.otherFunGramKBen_US
dc.subject.otherCorpusen_US
dc.subject.otherTerminologyen_US
dc.subject.otherBiologyen_US
dc.titleAutomatic domain-specific learning: towards a methodology for ontology enrichmenten_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.typeArticleen_US
dc.identifier.doi10.20420/rlfe.2017.173en_US
dc.investigacionArtes y Humanidadesen_US
dc.type2Artículoen_US
dc.identifier.ulpgces
dc.description.esciESCI
dc.description.dialnetimpact0,066
dc.description.dialnetqQ3
dc.description.dialnetdD6
dc.description.erihplusERIH PLUS
item.grantfulltextopen-
item.fulltextCon texto completo-
Appears in Collections:Artículos
Thumbnail
pdf
Adobe PDF (476,9 kB)
Show simple item record

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.