Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/70371
Título: Automatic domain-specific learning: towards a methodology for ontology enrichment
Autores/as: Ureña Gómez-Moreno, Pedro
Mestre-Mestre, Eva M.
Clasificación UNESCO: 570107 Lengua y literatura
550510 Filología
Palabras clave: Ontology learning
FunGramKB
Corpus
Terminology
Biology
Fecha de publicación: 2017
Publicación seriada: LFE. Revista de Lenguas para Fines Específicos 
Resumen: At the current rate of technological development, in a world where enormous amount of data are constantly created and in which the Internet is used as the primary means for information exchange, there exists a need for tools that help processing, analyzing and using that information. However, while the growth of information poses many opportunities for social and scientific advance, it has also highlighted the difficulties of extracting meaningful patterns from massive data. Ontologies have been claimed to play a major role in the processing of large-scale data, as they serve as universal models of knowledge representation, and are being studied as possible solutions to this. This paper presents a method for the automatic expansion of ontologies based on corpus and terminological data exploitation. The proposed “ontology enrichment method” (OEM) consists of a sequence of tasks aimed at classifying an input keyword automatically under its corresponding node within a target ontology. Results prove that the method can be successfully applied for the automatic classification of specialized units into a reference ontology.
URI: http://hdl.handle.net/10553/70371
ISSN: 1133-1127
DOI: 10.20420/rlfe.2017.173
Fuente: LFE. Revista de lenguas para fines específicos [eISSN 2340-8561], v. 23 (2), p. 63-85
Colección:Artículos
miniatura
pdf
Adobe PDF (476,9 kB)
Vista completa

Visitas

60
actualizado el 04-may-2024

Descargas

89
actualizado el 04-may-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.