Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/70371
Título: | Automatic domain-specific learning: towards a methodology for ontology enrichment | Autores/as: | Ureña Gómez-Moreno, Pedro Mestre-Mestre, Eva M. |
Clasificación UNESCO: | 570107 Lengua y literatura 550510 Filología |
Palabras clave: | Ontology learning FunGramKB Corpus Terminology Biology |
Fecha de publicación: | 2017 | Publicación seriada: | LFE. Revista de Lenguas para Fines Específicos | Resumen: | At the current rate of technological development, in a world where enormous amount of data are constantly created and in which the Internet is used as the primary means for information exchange, there exists a need for tools that help processing, analyzing and using that information. However, while the growth of information poses many opportunities for social and scientific advance, it has also highlighted the difficulties of extracting meaningful patterns from massive data. Ontologies have been claimed to play a major role in the processing of large-scale data, as they serve as universal models of knowledge representation, and are being studied as possible solutions to this. This paper presents a method for the automatic expansion of ontologies based on corpus and terminological data exploitation. The proposed “ontology enrichment method” (OEM) consists of a sequence of tasks aimed at classifying an input keyword automatically under its corresponding node within a target ontology. Results prove that the method can be successfully applied for the automatic classification of specialized units into a reference ontology. | URI: | http://hdl.handle.net/10553/70371 | ISSN: | 1133-1127 | DOI: | 10.20420/rlfe.2017.173 | Fuente: | LFE. Revista de lenguas para fines específicos [eISSN 2340-8561], v. 23 (2), p. 63-85 |
Colección: | Artículos |
Visitas
60
actualizado el 04-may-2024
Descargas
89
actualizado el 04-may-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.