Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/70001
Título: Hot off the press in expert systems on underwater robotic missions: success history applied to differential evolution for underwater glider path planning
Autores/as: Zamuda, Aleš
Hernández-Sosa, José Daniel 
Clasificación UNESCO: 1203 Ciencia de los ordenadores
Palabras clave: Bound-Constrained Optimization
Differential Evolution
L-Shade
Linear Population Size Reduction
Success-History Based Parameter Adaptation, et al.
Fecha de publicación: 2019
Publicación seriada: Gecco 2019 Companion - Proceedings Of The 2019 Genetic And Evolutionary Computation Conference Companion
Conferencia: 2019 Genetic and Evolutionary Computation Conference, GECCO 2019 
Resumen: The real-world implementation of Underwater Glider Path Planning (UGPP) over the dynamic and changing environment in deep ocean waters requires complex mission planning under very high uncertainties. Such a mission is also influenced to a large extent by remote sensing for forecasting weather models outcomes used to predict spatial currents in deep sea, further limiting the available time for accurate run-time decisions by the pilot, who needs to re-test several possible mission scenarios in a short time, usually a few minutes. Hence, this paper presents the recently proposed UGPP mission scenarios' optimization with a recently well performing algorithm for continuous numerical optimization, Success-History Based Adaptive Differential Evolution Algorithm (SHADE) including Linear population size reduction (L-SHADE). An algorithm for path optimization considering the ocean currents' model predictions, vessel dynamics, and limited communication, yields potential way-points for the vessel based on the most probable scenario; this is especially useful for short-term opportunistic missions where no reactive control is possible. The newly obtained results with L-SHADE outperformed existing literature results for the UGPP benchmark scenarios. Thereby, this new application of Evolutionary Algorithms to UGPP contributes significantly to the capacity of the decision-makers when they use the improved UGPP expert system yielding better trajectories.
URI: http://hdl.handle.net/10553/70001
ISBN: 978-1-4503-6748-6
DOI: 10.1145/3319619.3326763
Fuente: GECCO 2019 Companion - Proceedings of the 2019 Genetic and Evolutionary Computation Conference Companion, p. 39-40
Colección:Actas de congresos
Vista completa

Visitas

136
actualizado el 19-oct-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.