Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/70001
DC FieldValueLanguage
dc.contributor.authorZamuda, Alešen_US
dc.contributor.authorHernández-Sosa, José Danielen_US
dc.date.accessioned2020-02-05T12:51:51Z-
dc.date.available2020-02-05T12:51:51Z-
dc.date.issued2019en_US
dc.identifier.isbn978-1-4503-6748-6en_US
dc.identifier.otherScopus-
dc.identifier.urihttp://hdl.handle.net/10553/70001-
dc.description.abstractThe real-world implementation of Underwater Glider Path Planning (UGPP) over the dynamic and changing environment in deep ocean waters requires complex mission planning under very high uncertainties. Such a mission is also influenced to a large extent by remote sensing for forecasting weather models outcomes used to predict spatial currents in deep sea, further limiting the available time for accurate run-time decisions by the pilot, who needs to re-test several possible mission scenarios in a short time, usually a few minutes. Hence, this paper presents the recently proposed UGPP mission scenarios' optimization with a recently well performing algorithm for continuous numerical optimization, Success-History Based Adaptive Differential Evolution Algorithm (SHADE) including Linear population size reduction (L-SHADE). An algorithm for path optimization considering the ocean currents' model predictions, vessel dynamics, and limited communication, yields potential way-points for the vessel based on the most probable scenario; this is especially useful for short-term opportunistic missions where no reactive control is possible. The newly obtained results with L-SHADE outperformed existing literature results for the UGPP benchmark scenarios. Thereby, this new application of Evolutionary Algorithms to UGPP contributes significantly to the capacity of the decision-makers when they use the improved UGPP expert system yielding better trajectories.en_US
dc.languageengen_US
dc.relation.ispartofGecco 2019 Companion - Proceedings Of The 2019 Genetic And Evolutionary Computation Conference Companionen_US
dc.sourceGECCO 2019 Companion - Proceedings of the 2019 Genetic and Evolutionary Computation Conference Companion, p. 39-40en_US
dc.subject1203 Ciencia de los ordenadoresen_US
dc.subject.otherBound-Constrained Optimizationen_US
dc.subject.otherDifferential Evolutionen_US
dc.subject.otherL-Shadeen_US
dc.subject.otherLinear Population Size Reductionen_US
dc.subject.otherSuccess-History Based Parameter Adaptationen_US
dc.subject.otherUnderwater Glider Path Planningen_US
dc.titleHot off the press in expert systems on underwater robotic missions: success history applied to differential evolution for underwater glider path planningen_US
dc.typeinfo:eu-repo/semantics/conferenceObjecten_US
dc.typeConferenceObjecten_US
dc.relation.conference2019 Genetic and Evolutionary Computation Conference, GECCO 2019
dc.identifier.doi10.1145/3319619.3326763en_US
dc.identifier.scopus85070598511-
dc.contributor.authorscopusid23975217400-
dc.contributor.authorscopusid57188865208-
dc.description.lastpage40-
dc.description.firstpage39-
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Actas de congresosen_US
dc.utils.revisionen_US
dc.identifier.conferenceidevents121663
dc.identifier.ulpgces
dc.description.ggs2
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.author.deptGIR SIANI: Inteligencia Artificial, Robótica y Oceanografía Computacional-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.orcid0000-0003-3022-7698-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.fullNameHernández Sosa, José Daniel-
crisitem.event.eventsstartdate13-07-2019-
crisitem.event.eventsenddate17-07-2019-
Appears in Collections:Actas de congresos
Show simple item record

Page view(s)

136
checked on Oct 19, 2024

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.