Please use this identifier to cite or link to this item:
http://hdl.handle.net/10553/69755
Title: | Biometric identifier based on hand and hand-written signature contour information | Authors: | Pitters Figueroa, Fernando A. Travieso, Carlos M. Dutta, Malay Kishore Singh, Anushikha |
UNESCO Clasification: | 220990 Tratamiento digital. Imágenes | Keywords: | Biometrics Classification Hand Shape Handwritten Signature Identification, et al |
Issue Date: | 2018 | Journal: | International Conference on Contemporary Computing | Conference: | 10th International Conference on Contemporary Computing, IC3 2017 | Abstract: | The present work presents a biometric identifier system using the combination of two different features: hands shape (finger lengths and width) and hand-written signature contour. Signature database contains 300 different signers with 24 signatures and the hand database has 144 owners with 10 images. The study covers three different classifiers: Hidden Markov Models (HMM), Support Vector Machines (SVM) and a combination of both using the Fisher Kernel. Systems are evaluated separately and in conjunction, giving in each case 100% of identification success rate for the combined classifier. The combination of features gives better results when reducing the training set than the independent systems. | URI: | http://hdl.handle.net/10553/69755 | ISBN: | 978-1-5386-3077-8 | ISSN: | 2572-6110 | DOI: | 10.1109/IC3.2017.8284292 | Source: | 10Th International Conference On Contemporary Computing (Ic3) [ISSN 2572-6110], p. 43-48, (Febrero 2018) |
Appears in Collections: | Actas de congresos |
Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.