Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/69755
Título: | Biometric identifier based on hand and hand-written signature contour information | Autores/as: | Pitters Figueroa, Fernando A. Travieso, Carlos M. Dutta, Malay Kishore Singh, Anushikha |
Clasificación UNESCO: | 220990 Tratamiento digital. Imágenes | Palabras clave: | Biometrics Classification Hand Shape Handwritten Signature Identification, et al. |
Fecha de publicación: | 2018 | Publicación seriada: | International Conference on Contemporary Computing | Conferencia: | 10th International Conference on Contemporary Computing, IC3 2017 | Resumen: | The present work presents a biometric identifier system using the combination of two different features: hands shape (finger lengths and width) and hand-written signature contour. Signature database contains 300 different signers with 24 signatures and the hand database has 144 owners with 10 images. The study covers three different classifiers: Hidden Markov Models (HMM), Support Vector Machines (SVM) and a combination of both using the Fisher Kernel. Systems are evaluated separately and in conjunction, giving in each case 100% of identification success rate for the combined classifier. The combination of features gives better results when reducing the training set than the independent systems. | URI: | http://hdl.handle.net/10553/69755 | ISBN: | 978-1-5386-3077-8 | ISSN: | 2572-6110 | DOI: | 10.1109/IC3.2017.8284292 | Fuente: | 10Th International Conference On Contemporary Computing (Ic3) [ISSN 2572-6110], p. 43-48, (Febrero 2018) |
Colección: | Actas de congresos |
Citas SCOPUSTM
2
actualizado el 15-dic-2024
Visitas
68
actualizado el 08-jun-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.