Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/69748
Campo DC Valoridioma
dc.contributor.authorIssac, Ashish-
dc.contributor.authorDutta, Malay Kishore-
dc.contributor.authorTravieso González, Carlos Manuel-
dc.date.accessioned2020-02-05T12:49:49Z-
dc.date.available2020-02-05T12:49:49Z-
dc.date.issued2020-
dc.identifier.issn0941-0643-
dc.identifier.otherScopus-
dc.identifier.urihttp://hdl.handle.net/10553/69748-
dc.description.abstractDiabetic retinopathy (DR) is one of the complications of diabetes affecting the eyes. If not treated at an early stage, then it can cause permanent blindness. The present work proposes a method for automatic detection of pathologies that are indicative parameters for DR and use them strategically in a framework to grade the severity of the disease. The bright lesions are highlighted using a normalization process followed by anisotropic diffusion and intensity threshold for detection of lesions which makes the algorithm robust to correctly reject false positives. SVM-based classifier is used to reject false positives using 10 distinct feature types. Red lesions are accurately detected from a shade-corrected green channel image, followed by morphological flood filling and regional minima operations. The rejection of false positives using geometrical features makes the system less complex and computationally efficient. A comprehensive quantitative analysis to grade the severity of the disease has resulted in an average sensitivity of 92.85 and 86.03% on DIARETDB1 and MESSIDOR databases, respectively.-
dc.languageeng-
dc.relation.ispartofNeural Computing and Applications-
dc.sourceNeural Computing and Applications [ISSN 0941-0643], n. 32, p. 15687–15697-
dc.subject320109 Oftalmología-
dc.subject3307 Tecnología electrónica-
dc.titleAutomatic computer vision-based detection and quantitative analysis of indicative parameters for grading of diabetic retinopathy-
dc.typeinfo:eu-repo/semantics/Article-
dc.typeArticle-
dc.identifier.doi10.1007/s00521-018-3443-z-
dc.identifier.scopus85044182115-
dc.contributor.authorscopusid56800652200-
dc.contributor.authorscopusid35291803600-
dc.contributor.authorscopusid57196462914-
dc.description.lastpage11-
dc.identifier.issue20-
dc.description.firstpage1-
dc.investigacionIngeniería y Arquitectura-
dc.type2Artículo-
dc.description.numberofpages11-
dc.utils.revision-
dc.date.coverdateMarzo 2018-
dc.identifier.ulpgc-
dc.contributor.buulpgcBU-TEL-
dc.description.sjr0,713
dc.description.jcr5,606
dc.description.sjrqQ1
dc.description.jcrqQ1
dc.description.scieSCIE
item.fulltextSin texto completo-
item.grantfulltextnone-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.orcid0000-0002-4621-2768-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.fullNameTravieso González, Carlos Manuel-
Colección:Artículos
Vista resumida

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.