Please use this identifier to cite or link to this item:
http://hdl.handle.net/10553/69748
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Issac, Ashish | - |
dc.contributor.author | Dutta, Malay Kishore | - |
dc.contributor.author | Travieso González, Carlos Manuel | - |
dc.date.accessioned | 2020-02-05T12:49:49Z | - |
dc.date.available | 2020-02-05T12:49:49Z | - |
dc.date.issued | 2020 | - |
dc.identifier.issn | 0941-0643 | - |
dc.identifier.other | Scopus | - |
dc.identifier.uri | http://hdl.handle.net/10553/69748 | - |
dc.description.abstract | Diabetic retinopathy (DR) is one of the complications of diabetes affecting the eyes. If not treated at an early stage, then it can cause permanent blindness. The present work proposes a method for automatic detection of pathologies that are indicative parameters for DR and use them strategically in a framework to grade the severity of the disease. The bright lesions are highlighted using a normalization process followed by anisotropic diffusion and intensity threshold for detection of lesions which makes the algorithm robust to correctly reject false positives. SVM-based classifier is used to reject false positives using 10 distinct feature types. Red lesions are accurately detected from a shade-corrected green channel image, followed by morphological flood filling and regional minima operations. The rejection of false positives using geometrical features makes the system less complex and computationally efficient. A comprehensive quantitative analysis to grade the severity of the disease has resulted in an average sensitivity of 92.85 and 86.03% on DIARETDB1 and MESSIDOR databases, respectively. | - |
dc.language | eng | - |
dc.relation.ispartof | Neural Computing and Applications | - |
dc.source | Neural Computing and Applications [ISSN 0941-0643], n. 32, p. 15687–15697 | - |
dc.subject | 320109 Oftalmología | - |
dc.subject | 3307 Tecnología electrónica | - |
dc.title | Automatic computer vision-based detection and quantitative analysis of indicative parameters for grading of diabetic retinopathy | - |
dc.type | info:eu-repo/semantics/Article | - |
dc.type | Article | - |
dc.identifier.doi | 10.1007/s00521-018-3443-z | - |
dc.identifier.scopus | 85044182115 | - |
dc.contributor.authorscopusid | 56800652200 | - |
dc.contributor.authorscopusid | 35291803600 | - |
dc.contributor.authorscopusid | 57196462914 | - |
dc.description.lastpage | 11 | - |
dc.identifier.issue | 20 | - |
dc.description.firstpage | 1 | - |
dc.investigacion | Ingeniería y Arquitectura | - |
dc.type2 | Artículo | - |
dc.description.numberofpages | 11 | - |
dc.utils.revision | Sí | - |
dc.date.coverdate | Marzo 2018 | - |
dc.identifier.ulpgc | Sí | - |
dc.contributor.buulpgc | BU-TEL | - |
dc.description.sjr | 0,713 | |
dc.description.jcr | 5,606 | |
dc.description.sjrq | Q1 | |
dc.description.jcrq | Q1 | |
dc.description.scie | SCIE | |
item.fulltext | Sin texto completo | - |
item.grantfulltext | none | - |
crisitem.author.dept | GIR IDeTIC: División de Procesado Digital de Señales | - |
crisitem.author.dept | IU para el Desarrollo Tecnológico y la Innovación | - |
crisitem.author.dept | Departamento de Señales y Comunicaciones | - |
crisitem.author.orcid | 0000-0002-4621-2768 | - |
crisitem.author.parentorg | IU para el Desarrollo Tecnológico y la Innovación | - |
crisitem.author.fullName | Travieso González, Carlos Manuel | - |
Appears in Collections: | Artículos |
Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.