Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/69748
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Issac, Ashish | - |
dc.contributor.author | Dutta, Malay Kishore | - |
dc.contributor.author | Travieso González, Carlos Manuel | - |
dc.date.accessioned | 2020-02-05T12:49:49Z | - |
dc.date.available | 2020-02-05T12:49:49Z | - |
dc.date.issued | 2020 | - |
dc.identifier.issn | 0941-0643 | - |
dc.identifier.other | Scopus | - |
dc.identifier.uri | http://hdl.handle.net/10553/69748 | - |
dc.description.abstract | Diabetic retinopathy (DR) is one of the complications of diabetes affecting the eyes. If not treated at an early stage, then it can cause permanent blindness. The present work proposes a method for automatic detection of pathologies that are indicative parameters for DR and use them strategically in a framework to grade the severity of the disease. The bright lesions are highlighted using a normalization process followed by anisotropic diffusion and intensity threshold for detection of lesions which makes the algorithm robust to correctly reject false positives. SVM-based classifier is used to reject false positives using 10 distinct feature types. Red lesions are accurately detected from a shade-corrected green channel image, followed by morphological flood filling and regional minima operations. The rejection of false positives using geometrical features makes the system less complex and computationally efficient. A comprehensive quantitative analysis to grade the severity of the disease has resulted in an average sensitivity of 92.85 and 86.03% on DIARETDB1 and MESSIDOR databases, respectively. | - |
dc.language | eng | - |
dc.relation.ispartof | Neural Computing and Applications | - |
dc.source | Neural Computing and Applications [ISSN 0941-0643], n. 32, p. 15687–15697 | - |
dc.subject | 320109 Oftalmología | - |
dc.subject | 3307 Tecnología electrónica | - |
dc.title | Automatic computer vision-based detection and quantitative analysis of indicative parameters for grading of diabetic retinopathy | - |
dc.type | info:eu-repo/semantics/Article | - |
dc.type | Article | - |
dc.identifier.doi | 10.1007/s00521-018-3443-z | - |
dc.identifier.scopus | 85044182115 | - |
dc.contributor.authorscopusid | 56800652200 | - |
dc.contributor.authorscopusid | 35291803600 | - |
dc.contributor.authorscopusid | 57196462914 | - |
dc.description.lastpage | 11 | - |
dc.identifier.issue | 20 | - |
dc.description.firstpage | 1 | - |
dc.investigacion | Ingeniería y Arquitectura | - |
dc.type2 | Artículo | - |
dc.description.numberofpages | 11 | - |
dc.utils.revision | Sí | - |
dc.date.coverdate | Marzo 2018 | - |
dc.identifier.ulpgc | Sí | - |
dc.contributor.buulpgc | BU-TEL | - |
dc.description.sjr | 0,713 | |
dc.description.jcr | 5,606 | |
dc.description.sjrq | Q1 | |
dc.description.jcrq | Q1 | |
dc.description.scie | SCIE | |
item.fulltext | Sin texto completo | - |
item.grantfulltext | none | - |
crisitem.author.dept | GIR IDeTIC: División de Procesado Digital de Señales | - |
crisitem.author.dept | IU para el Desarrollo Tecnológico y la Innovación | - |
crisitem.author.dept | Departamento de Señales y Comunicaciones | - |
crisitem.author.orcid | 0000-0002-4621-2768 | - |
crisitem.author.parentorg | IU para el Desarrollo Tecnológico y la Innovación | - |
crisitem.author.fullName | Travieso González, Carlos Manuel | - |
Appears in Collections: | Artículos |
SCOPUSTM
Citations
10
checked on Mar 30, 2025
WEB OF SCIENCETM
Citations
9
checked on Mar 30, 2025
Page view(s)
154
checked on Jan 18, 2025
Google ScholarTM
Check
Altmetric
Share
Export metadata
Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.