Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/69748
DC FieldValueLanguage
dc.contributor.authorIssac, Ashish-
dc.contributor.authorDutta, Malay Kishore-
dc.contributor.authorTravieso González, Carlos Manuel-
dc.date.accessioned2020-02-05T12:49:49Z-
dc.date.available2020-02-05T12:49:49Z-
dc.date.issued2020-
dc.identifier.issn0941-0643-
dc.identifier.otherScopus-
dc.identifier.urihttp://hdl.handle.net/10553/69748-
dc.description.abstractDiabetic retinopathy (DR) is one of the complications of diabetes affecting the eyes. If not treated at an early stage, then it can cause permanent blindness. The present work proposes a method for automatic detection of pathologies that are indicative parameters for DR and use them strategically in a framework to grade the severity of the disease. The bright lesions are highlighted using a normalization process followed by anisotropic diffusion and intensity threshold for detection of lesions which makes the algorithm robust to correctly reject false positives. SVM-based classifier is used to reject false positives using 10 distinct feature types. Red lesions are accurately detected from a shade-corrected green channel image, followed by morphological flood filling and regional minima operations. The rejection of false positives using geometrical features makes the system less complex and computationally efficient. A comprehensive quantitative analysis to grade the severity of the disease has resulted in an average sensitivity of 92.85 and 86.03% on DIARETDB1 and MESSIDOR databases, respectively.-
dc.languageeng-
dc.relation.ispartofNeural Computing and Applications-
dc.sourceNeural Computing and Applications [ISSN 0941-0643], n. 32, p. 15687–15697-
dc.subject320109 Oftalmología-
dc.subject3307 Tecnología electrónica-
dc.titleAutomatic computer vision-based detection and quantitative analysis of indicative parameters for grading of diabetic retinopathy-
dc.typeinfo:eu-repo/semantics/Article-
dc.typeArticle-
dc.identifier.doi10.1007/s00521-018-3443-z-
dc.identifier.scopus85044182115-
dc.contributor.authorscopusid56800652200-
dc.contributor.authorscopusid35291803600-
dc.contributor.authorscopusid57196462914-
dc.description.lastpage11-
dc.identifier.issue20-
dc.description.firstpage1-
dc.investigacionIngeniería y Arquitectura-
dc.type2Artículo-
dc.description.numberofpages11-
dc.utils.revision-
dc.date.coverdateMarzo 2018-
dc.identifier.ulpgc-
dc.contributor.buulpgcBU-TEL-
dc.description.sjr0,713
dc.description.jcr5,606
dc.description.sjrqQ1
dc.description.jcrqQ1
dc.description.scieSCIE
item.fulltextSin texto completo-
item.grantfulltextnone-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.orcid0000-0002-4621-2768-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.fullNameTravieso González, Carlos Manuel-
Appears in Collections:Artículos
Show simple item record

SCOPUSTM   
Citations

10
checked on Mar 30, 2025

WEB OF SCIENCETM
Citations

9
checked on Mar 30, 2025

Page view(s)

154
checked on Jan 18, 2025

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.