Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/69730
DC FieldValueLanguage
dc.contributor.authorHarar, Pavolen_US
dc.contributor.authorAlonso-Hernández, Jesús B.en_US
dc.contributor.authorMekyska, Jirien_US
dc.contributor.authorGalaz, Zoltanen_US
dc.contributor.authorBurget, Radimen_US
dc.contributor.authorSmekal, Zdeneken_US
dc.date.accessioned2020-02-05T12:49:42Z-
dc.date.available2020-02-05T12:49:42Z-
dc.date.issued2017en_US
dc.identifier.isbn9781538608500en_US
dc.identifier.otherScopus-
dc.identifier.urihttp://hdl.handle.net/10553/69730-
dc.description.abstractThis paper describes a preliminary investigation of Voice Pathology Detection using Deep Neural Networks (DNN). We used voice recordings of sustained vowel /a/ produced at normal pitch from German corpus Saarbruecken Voice Database (SVD). This corpus contains voice recordings and electroglottograph signals of more than 2 000 speakers. The idea behind this experiment is the use of convolutional layers in combination with recurrent Long-Short-Term-Memory (LSTM) layers on raw audio signal. Each recording was split into 64 ms Hamming windowed segments with 30 ms overlap. Our trained model achieved 71.36% accuracy with 65.04% sensitivity and 77.67% specificity on 206 validation files and 68.08% accuracy with 66.75% sensitivity and 77.89% specificity on 874 testing files. This is a promising result in favor of this approach because it is comparable to similar previously published experiment that used different methodology. Further investigation is needed to achieve the state-of-the-art results.en_US
dc.languageengen_US
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en_US
dc.source2017 International Work Conference on Bio-Inspired Intelligence: Intelligent Systems for Biodiversity Conservation, IWOBI 2017 - Proceedings, Funchal, e17032869en_US
dc.subject3307 Tecnología electrónicaen_US
dc.titleVoice Pathology Detection Using Deep Learning: A Preliminary Studyen_US
dc.typeinfo:eu-repo/semantics/conferenceObjecten_US
dc.typeConferenceObjecten_US
dc.relation.conference5th IEEE International Work Conference on Bio-Inspired Intelligence, IWOBI 2017
dc.identifier.doi10.1109/IWOBI.2017.7985525
dc.identifier.scopus85028543233
dc.contributor.authorscopusid57192572816
dc.contributor.authorscopusid57195518660
dc.contributor.authorscopusid35746344400
dc.contributor.authorscopusid56888706700
dc.contributor.authorscopusid23011250200
dc.contributor.authorscopusid36855362600
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Actas de congresosen_US
dc.utils.revisionen_US
dc.date.coverdateJulio 2017
dc.identifier.conferenceidevents121608
dc.identifier.ulpgces
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.orcid0000-0002-7866-585X-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.fullNameAlonso Hernández, Jesús Bernardino-
crisitem.event.eventsstartdate10-07-2017-
crisitem.event.eventsenddate12-07-2017-
Appears in Collections:Actas de congresos
Show simple item record

SCOPUSTM   
Citations

89
checked on Nov 24, 2024

Page view(s)

86
checked on Jun 8, 2024

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.