Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/69730
Título: | Voice Pathology Detection Using Deep Learning: A Preliminary Study | Autores/as: | Harar, Pavol Alonso-Hernández, Jesús B. Mekyska, Jiri Galaz, Zoltan Burget, Radim Smekal, Zdenek |
Clasificación UNESCO: | 3307 Tecnología electrónica | Fecha de publicación: | 2017 | Editor/a: | Institute of Electrical and Electronics Engineers (IEEE) | Conferencia: | 5th IEEE International Work Conference on Bio-Inspired Intelligence, IWOBI 2017 | Resumen: | This paper describes a preliminary investigation of Voice Pathology Detection using Deep Neural Networks (DNN). We used voice recordings of sustained vowel /a/ produced at normal pitch from German corpus Saarbruecken Voice Database (SVD). This corpus contains voice recordings and electroglottograph signals of more than 2 000 speakers. The idea behind this experiment is the use of convolutional layers in combination with recurrent Long-Short-Term-Memory (LSTM) layers on raw audio signal. Each recording was split into 64 ms Hamming windowed segments with 30 ms overlap. Our trained model achieved 71.36% accuracy with 65.04% sensitivity and 77.67% specificity on 206 validation files and 68.08% accuracy with 66.75% sensitivity and 77.89% specificity on 874 testing files. This is a promising result in favor of this approach because it is comparable to similar previously published experiment that used different methodology. Further investigation is needed to achieve the state-of-the-art results. | URI: | http://hdl.handle.net/10553/69730 | ISBN: | 9781538608500 | DOI: | 10.1109/IWOBI.2017.7985525 | Fuente: | 2017 International Work Conference on Bio-Inspired Intelligence: Intelligent Systems for Biodiversity Conservation, IWOBI 2017 - Proceedings, Funchal, e17032869 |
Colección: | Actas de congresos |
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.