Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/69730
Campo DC Valoridioma
dc.contributor.authorHarar, Pavolen_US
dc.contributor.authorAlonso-Hernández, Jesús B.en_US
dc.contributor.authorMekyska, Jirien_US
dc.contributor.authorGalaz, Zoltanen_US
dc.contributor.authorBurget, Radimen_US
dc.contributor.authorSmekal, Zdeneken_US
dc.date.accessioned2020-02-05T12:49:42Z-
dc.date.available2020-02-05T12:49:42Z-
dc.date.issued2017en_US
dc.identifier.isbn9781538608500en_US
dc.identifier.otherScopus-
dc.identifier.urihttp://hdl.handle.net/10553/69730-
dc.description.abstractThis paper describes a preliminary investigation of Voice Pathology Detection using Deep Neural Networks (DNN). We used voice recordings of sustained vowel /a/ produced at normal pitch from German corpus Saarbruecken Voice Database (SVD). This corpus contains voice recordings and electroglottograph signals of more than 2 000 speakers. The idea behind this experiment is the use of convolutional layers in combination with recurrent Long-Short-Term-Memory (LSTM) layers on raw audio signal. Each recording was split into 64 ms Hamming windowed segments with 30 ms overlap. Our trained model achieved 71.36% accuracy with 65.04% sensitivity and 77.67% specificity on 206 validation files and 68.08% accuracy with 66.75% sensitivity and 77.89% specificity on 874 testing files. This is a promising result in favor of this approach because it is comparable to similar previously published experiment that used different methodology. Further investigation is needed to achieve the state-of-the-art results.en_US
dc.languageengen_US
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en_US
dc.source2017 International Work Conference on Bio-Inspired Intelligence: Intelligent Systems for Biodiversity Conservation, IWOBI 2017 - Proceedings, Funchal, e17032869en_US
dc.subject3307 Tecnología electrónicaen_US
dc.titleVoice Pathology Detection Using Deep Learning: A Preliminary Studyen_US
dc.typeinfo:eu-repo/semantics/conferenceObjecten_US
dc.typeConferenceObjecten_US
dc.relation.conference5th IEEE International Work Conference on Bio-Inspired Intelligence, IWOBI 2017
dc.identifier.doi10.1109/IWOBI.2017.7985525
dc.identifier.scopus85028543233
dc.contributor.authorscopusid57192572816
dc.contributor.authorscopusid57195518660
dc.contributor.authorscopusid35746344400
dc.contributor.authorscopusid56888706700
dc.contributor.authorscopusid23011250200
dc.contributor.authorscopusid36855362600
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Actas de congresosen_US
dc.utils.revisionen_US
dc.date.coverdateJulio 2017
dc.identifier.conferenceidevents121608
dc.identifier.ulpgces
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.event.eventsstartdate10-07-2017-
crisitem.event.eventsenddate12-07-2017-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.orcid0000-0002-7866-585X-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.fullNameAlonso Hernández, Jesús Bernardino-
Colección:Actas de congresos
Vista resumida

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.