Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/69730
Campo DC | Valor | idioma |
---|---|---|
dc.contributor.author | Harar, Pavol | en_US |
dc.contributor.author | Alonso-Hernández, Jesús B. | en_US |
dc.contributor.author | Mekyska, Jiri | en_US |
dc.contributor.author | Galaz, Zoltan | en_US |
dc.contributor.author | Burget, Radim | en_US |
dc.contributor.author | Smekal, Zdenek | en_US |
dc.date.accessioned | 2020-02-05T12:49:42Z | - |
dc.date.available | 2020-02-05T12:49:42Z | - |
dc.date.issued | 2017 | en_US |
dc.identifier.isbn | 9781538608500 | en_US |
dc.identifier.other | Scopus | - |
dc.identifier.uri | http://hdl.handle.net/10553/69730 | - |
dc.description.abstract | This paper describes a preliminary investigation of Voice Pathology Detection using Deep Neural Networks (DNN). We used voice recordings of sustained vowel /a/ produced at normal pitch from German corpus Saarbruecken Voice Database (SVD). This corpus contains voice recordings and electroglottograph signals of more than 2 000 speakers. The idea behind this experiment is the use of convolutional layers in combination with recurrent Long-Short-Term-Memory (LSTM) layers on raw audio signal. Each recording was split into 64 ms Hamming windowed segments with 30 ms overlap. Our trained model achieved 71.36% accuracy with 65.04% sensitivity and 77.67% specificity on 206 validation files and 68.08% accuracy with 66.75% sensitivity and 77.89% specificity on 874 testing files. This is a promising result in favor of this approach because it is comparable to similar previously published experiment that used different methodology. Further investigation is needed to achieve the state-of-the-art results. | en_US |
dc.language | eng | en_US |
dc.publisher | Institute of Electrical and Electronics Engineers (IEEE) | en_US |
dc.source | 2017 International Work Conference on Bio-Inspired Intelligence: Intelligent Systems for Biodiversity Conservation, IWOBI 2017 - Proceedings, Funchal, e17032869 | en_US |
dc.subject | 3307 Tecnología electrónica | en_US |
dc.title | Voice Pathology Detection Using Deep Learning: A Preliminary Study | en_US |
dc.type | info:eu-repo/semantics/conferenceObject | en_US |
dc.type | ConferenceObject | en_US |
dc.relation.conference | 5th IEEE International Work Conference on Bio-Inspired Intelligence, IWOBI 2017 | |
dc.identifier.doi | 10.1109/IWOBI.2017.7985525 | |
dc.identifier.scopus | 85028543233 | |
dc.contributor.authorscopusid | 57192572816 | |
dc.contributor.authorscopusid | 57195518660 | |
dc.contributor.authorscopusid | 35746344400 | |
dc.contributor.authorscopusid | 56888706700 | |
dc.contributor.authorscopusid | 23011250200 | |
dc.contributor.authorscopusid | 36855362600 | |
dc.investigacion | Ingeniería y Arquitectura | en_US |
dc.type2 | Actas de congresos | en_US |
dc.utils.revision | Sí | en_US |
dc.date.coverdate | Julio 2017 | |
dc.identifier.conferenceid | events121608 | |
dc.identifier.ulpgc | Sí | es |
item.grantfulltext | none | - |
item.fulltext | Sin texto completo | - |
crisitem.event.eventsstartdate | 10-07-2017 | - |
crisitem.event.eventsenddate | 12-07-2017 | - |
crisitem.author.dept | GIR IDeTIC: División de Procesado Digital de Señales | - |
crisitem.author.dept | IU para el Desarrollo Tecnológico y la Innovación | - |
crisitem.author.dept | Departamento de Señales y Comunicaciones | - |
crisitem.author.orcid | 0000-0002-7866-585X | - |
crisitem.author.parentorg | IU para el Desarrollo Tecnológico y la Innovación | - |
crisitem.author.fullName | Alonso Hernández, Jesús Bernardino | - |
Colección: | Actas de congresos |
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.