Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/69663
Título: Comparative analysis of rainfall prediction models using machine learning in islands with complex orography: Tenerife island
Autores/as: Aguasca-Colomo, Ricardo 
Castellanos-Nieves, Dagoberto
Méndez, Máximo 
Clasificación UNESCO: 250909 Predicción numérica meteorológica
120304 Inteligencia artificial
Palabras clave: Classification algorithms
Data processing
Machine learning
Computational methods
Predictive models, et al.
Fecha de publicación: 2019
Publicación seriada: Applied Sciences (Basel) 
Resumen: We present a comparative study between predictive monthly rainfall models for islands of complex orography using machine learning techniques. The models have been developed for the island of Tenerife (Canary Islands). Weather forecasting is influenced both by the local geographic characteristics as well as by the time horizon comprised. Accuracy of mid-term rainfall prediction on islands with complex orography is generally low when carried out with atmospheric models. Predictive models based on algorithms such as Random Forest or Extreme Gradient Boosting among others were analyzed. The predictors used in the models include weather predictors measured in two main meteorological stations, reanalysis predictors from the National Oceanic and Atmospheric Administration, and the global predictor North Atlantic Oscillation, all of them obtained over a period of time of more than four decades. When comparing the proposed models, we evaluated accuracy, kappa and interpretability of the model obtained, as well as the relevance of the predictors used. The results show that global predictors such as the North Atlantic Oscillation Index (NAO) have a very low influence, while the local Geopotential Height (GPH) predictor is relatively more important. Machine learning prediction models are a relevant proposition for predicting medium-term precipitation in similar geographical regions.
URI: http://hdl.handle.net/10553/69663
ISSN: 2076-3417
DOI: 10.3390/app9224931
Fuente: Applied Sciences (Basel) [ISSN 2076-3417], v. 9 (22), 4931
Colección:Artículos
miniatura
pdf
Adobe PDF (4,66 MB)
Vista completa

Citas de WEB OF SCIENCETM
Citations

18
actualizado el 10-nov-2024

Visitas

104
actualizado el 02-sep-2023

Descargas

173
actualizado el 02-sep-2023

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.