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Abstract: We present a comparative study between predictive monthly rainfall models for islands of
complex orography using machine learning techniques. The models have been developed for the
island of Tenerife (Canary Islands). Weather forecasting is influenced both by the local geographic
characteristics as well as by the time horizon comprised. Accuracy of mid-term rainfall prediction
on islands with complex orography is generally low when carried out with atmospheric models.
Predictive models based on algorithms such as Random Forest or Extreme Gradient Boosting among
others were analyzed. The predictors used in the models include weather predictors measured in
two main meteorological stations, reanalysis predictors from the National Oceanic and Atmospheric
Administration, and the global predictor North Atlantic Oscillation, all of them obtained over a
period of time of more than four decades. When comparing the proposed models, we evaluated
accuracy, kappa and interpretability of the model obtained, as well as the relevance of the predictors
used. The results show that global predictors such as the North Atlantic Oscillation Index (NAO)
have a very low influence, while the local Geopotential Height (GPH) predictor is relatively more
important. Machine learning prediction models are a relevant proposition for predicting medium-term
precipitation in similar geographical regions.

Keywords: classification algorithms; data processing; machine learning; computational methods;
predictive models; rainfall forecasting; extreme gradient boosting (XGBoost); random forest (rf)

1. Introduction

The weather is one of the main concerns in the Canary Islands, especially in those islands with
very abrupt orography. On the one hand, the agricultural sector in the Canary Islands can be described
as segmented, very sensitive to rainfall and without permanent watercourses. On the other hand,
the main economic activity in the Canary Islands is tourism, which attracts large numbers of floating
population. In addition, the wide variety of meteorological factors occurring in the Canary Islands
make rainfall prediction an important issue and, together with its temporal estimation, constitutes an
essential factor for decision making and to minimize potential risks linked to sudden increases and the
considerable disperse distribution of the affected areas.

The Canary Islands are part of the Macaronesia and are located northwest of the Atlantic Ocean
reaching from 27°37’ to 29°25’ N and from 13°20’ to 18°10” W. The Canary Islands archipelago is made
up of eight main islands lined from East to West and ten smaller isles (Figure 1).

Appl. Sci. 2019, 9, 4931; doi:10.3390/app9224931 www.mdpi.com/journal/applsci


http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0003-2217-8005
https://orcid.org/0000-0002-3230-8638
https://orcid.org/0000-0002-7133-7108
http://dx.doi.org/10.3390/app9224931
http://www.mdpi.com/journal/applsci
https://www.mdpi.com/2076-3417/9/22/4931?type=check_update&version=2

Appl. Sci. 2019, 9, 4931 20f17

Figure 1. Canary Islands, National Aeronautics and Space Administration (NASA) image acquired 13
October 2011.

The island of Tenerife, with a population close to 900,000 inhabitants and the annual visit of more
than six million tourists, is the most populated island and the largest in the archipelago. In fact, it is
one of the areas with the highest population density in Europe (440 inhabitants/km?).

The island, located approximately 300 km west of the northern coast of Africa, is characterized
by an uneven and steep orography with sharp slopes from the inner part to the coast. The central
area is crowned by a mountain range with Teide volcano on top (3718 m), which divides the island
into two highly differentiated climatic areas: the southern and the northern area. The southern area
is drier because the mountains block the passage of trade winds and the northern area is relatively
wetter precisely because of the effect of those trade winds. Overall precipitation is low [1], with an
annual average of 233 mm on the whole island. Distribution of rainfall is heterogeneous, with a large
percentage of rainfall occurring in short periods of time and sparse in space. These factors mean that
sudden increases in rainfall constitute a serious issue that has led to the loss of human lives as well as
economic loss in sectors such as tourism, agriculture, and communications infrastructure. Therefore,
weather forecasting and climate analysis are lines of research that are prioritized.

In this paper, we develop and compare several rainfall prediction models using machine learning
techniques (ML) for the island of Tenerife resulting in a classification of rainy or dry months. In order
to do this, we used a meteorological dataset [2] for a period of time of 41 years of registered data,
from 1976 to 2016.

2. Literature Review

Most research works on weather prediction are carried out through numerical methods. These
methods are carried out by using the laws of fluid dynamics and of chemical processes taking place
in the atmosphere to then integrate all the meteorological data available onto a computational grid
and project their evolution in time. There are two types of models according to the resolution of their
computational grid: synoptic scale models (macro-scale with wide mesh of 40 km or wider) and regional
scale models (mesoscale with meshes of a few kilometers), which have better spatial and temporal
resolution. There are many models being used nowadays, both government and private models.
For instance, the Global Forecast System (GFS) model [3] is a numerical weather prediction model
produced by the National Center for Environmental Prediction-National Oceanic and Atmospheric
Administration (NOAA-NCEP). GFS is an open and free model at a synoptic scale with horizontal
resolution of 27 km for mid-term prediction (eight days) and resolution of 70 km for long-term
prediction (16 days). There is also the Weather Research and Forecasting (WRF) model [4], which is a
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mesoscale system limited to a specific region (between 2 and 15 km) and mid-term weather prediction
(1-2 days), and thus closer to reality. Another model is the European Centre for Medium-Range Weather
Forecasts (ECMWEF) model [5], a system with horizontal resolution of 9 km for 10-day prediction and a
resolution of 18 km for 15 days. On the one hand, one of the main problems of weather forecasting
with numerical methods is their poor performance in segmented regions with abrupt orography,
which make them not very suitable for the prediction of the evolution of Mesoscale Convective Systems
(MCS). On the other hand, there are numerous contributions regarding the use of ML models for
weather prediction, despite the permanent controversy that, although through ML we can obtain
models to predict a meteorological phenomenon in a more or less reliable way, ML cannot explain
these phenomena in physical terms.

In the reviewed literature, most research in meteorological prediction has been carried out mainly
in two areas: the construction of models based on machine learning for the prediction of meteorological
parameters in general and specific models for rainfall prediction, these ones due to the need to estimate
risks appropriately and also because of economic reasons. With regard to the first models mentioned,
it is worth highlighting the works of [6-10]. In [10], several data mining algorithms (DM) are explored
using large datasets, especially daily meteorological data from NOAA, which make it possible to
identify climate patterns and make valid mid-term predictions. In addition, in [8], useful knowledge
is extracted from a 9-year period of meteorological data using DM. The steps taken in this study
are: data preprocessing, outlier analysis, clustering, classification, and prediction. Each technique
used is classified according to its relevance in the prediction. A more specific application is proposed
in [7], where authors use a model to show the relationship between meteorological parameters read in
meteorological stations and secondary parameters such as vertical velocity variance or surface heat
flux. In the study by [9], a hybrid global climate model is suggested (HGCM) through the use of
neural networks to speed up the calculations of predictions. In the work by [6], the authors suggest
a procedure to predict the behavior of chaotic systems. As an application, this technique is used
to obtain stable behavioral patterns of the North Atlantic Oscillation (NAO) index in its prediction
through independent component analysis for spatiotemporal data of the variable sea-level pressure
(SLP). Calculations are validated with temporal data registered by the NAO index.

Among the literature reviewed, there are other specific models that range from models for the
prediction of the number of solar irradiance hours in a specific geographic area [11], to models for
the prediction of wind gusts for agriculture applications [12], or even models for the classification
of the quality of wine in a specific region depending on meteorology [13]. In the study by [11],
several ML methods are presented to obtain predictions of solar radiation through an analysis to
compare the different margins of error in predictions. In order to improve the characteristics of the
predicting algorithm, a series of hybrid models or ensemble models used by different authors are
presented. In the paper by [12], authors study wind gust prediction. This forecasting is characterized
by the high variability and brief duration of wind gusts and because they occur suddenly and end
abruptly. This work suggests a pattern based on the application of ML techniques, which classifies
those gusts by using thousands of measurements made using both real-time variables and variables
from mathematical models. Finally, in [13], authors developed an application using DM techniques
to predict wine quality depending on climatic, physical, and crop yield factors. In order to do so,
an artificial neural network algorithm was used to classify the data associations and the chi-square test
was used to establish the degree of dependence between the related variable values.

In [14], the authors propose the integration of meteorological data from different sources of
the so-called Data Mining Meteo (SMM) system, which makes it possible to obtain, by using DM
techniques, quick predictions, even in the presence of randomly occurring changing phenomena.
The applications focus on the short-term prediction of meteorological events such as fog and low
cloud cover. Furthermore, in [15], the authors make cloud-ceiling-height forecast based on METAR
meteorological data at JFK airport. In this work, the authors conclude that ML algorithms show better
prediction results than methods based on Numerical Weather Prediction (NWP) models. In a different
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study [16], the authors propose an interesting multimodal algorithm for predicting visibility due to
atmospheric conditions, not only related to meteorological variables, but also taking into account
pollution from gaseous effluent contamination of factory exhaust in a given area. For this purpose,
an advanced numerical prediction model and a method for detecting gaseous pollutant emissions are
used. Two numerical regression algorithms, the XGBoost and the LightGBM, are used to train the
prediction model, to which the estimation data based on Landsat-8 satellite images are added to help
in the prediction. The results obtained by this numerical prediction model are more accurate than
those obtained by other methods.

In [17], the authors introduce a system to obtain accurate short-term predictions, which uses
regression functions and data collected from weather stations, including temperature, wind speed,
solar radiation and pressure, humidity, cloudiness, and rainfall. After preprocessing these data,
the prediction results obtained are compared with SVM, regression tree (RF), and a fit linear model
(FITLM). The results show the robustness of the system.

In [18], the authors propose the use of a modified algorithm based on XGBoost for forecasting
wind energy for use in the electrical system. The results of this model are compared with others, based
on neural networks (BPNN), regression trees (CART), support vector regression (SVR), and, with a
simple XGBoost model, obtaining the best accuracy results in the prediction.

The rainfall estimation models suggested use either numerical historical data from meteorological
stations or data from reanalysis software or from these combined with images. Among the first type,
it is worth highlighting the model proposed in [19], which proposes a DM algorithm for rainfall
prediction over the monsoon period in the Indian peninsula combined with statistical techniques and
which predicts rainfall in five categories. In [20], the authors compare the predictive characteristics
with Markov Chains with extended rainfall prediction and six other ML algorithms and find very good
results, which even allow for detecting correlations between different climates and their predictive
accuracy. Models including image processing use neural networks, like in the model proposed in [21],
which focuses on the prediction of rainfall in a local region over a short period of time using ML
techniques and working with spatiotemporal datasets. In order to tackle this problem, the authors
suggest the use of Recurrent Neural Networks (RNN) with a convolutional structure. This methodology
is applied in rainfall prediction systems based on radar image analysis of rainfall over a certain period.
In addition, in [22], the authors develop an approach based on spatial analysis with DM techniques
to enable the deduction of the correlations and causalities between satellite images of the moving
trajectories of Mesoscale Convective Systems (MCS) and heavy rainfall in Tibet. The proposed
approach proves to be efficient by automatically analyzing large meteorological datasets to assist
weather forecasting.

In [23], a machine learning method algorithm based on support vector machine with dislocation
of temporal variables (DSVM) was used to make short-term rain predictions.

For this purpose, data from meteorological stations and satellite meteorological images were used.
The results were validated using weather threat scores, showing good forecasts within 1 to 6 h.

In [24], the authors present a new approach for predicting rainfall and runoff in river basins
over the next two months. To do this, the authors propose a combination of wavelet transform
and artificial neural network (WANN) that incorporates observed and predicted time series in the
input structure. The comparison between the performance of the proposed WANN model and the
performance of traditional WANN models through an uncertainty analysis reveals the superiority of
the model proposed in this study.

Finally, in [25], a machine learning algorithm based on random forest (RF) is used to make
quantitative estimates of rainfall. Satellite temperature data are combined with numerical weather
prediction (NWP) data from the global forecast system. In general, this algorithm obtains better
predictive results over ocean surfaces, underestimating the prediction of the rainfall rate over land.
However, the selected RF classification model allows the precipitation area to be predicted with an
accuracy of 0.87.
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In recent years, research has intensified in the analysis of weather prediction models, specifically
of rainfall, both in the medium term and in the short term, using various techniques of Machine
learning and Deep Learning [26—29]. There exists a notable trend in the experimentation of models
based on neural networks. However, these models require a careful selection and preprocessing of the
weather predictors chosen to fit the physical environment in which the study is conducted.

This paper proposes an analytic solution based on machine learning techniques, which allows
monthly rainfall prediction. The data used include mainly meteorological datasets available from
meteorological stations of the island of Tenerife and reanalysis values from NOAA databases.

Climate in the Canary Islands

Some of the climatic characteristics of the Canary Islands have been thoroughly studied by several
authors [30-32]. The average trade winds blow mainly against the north side of the islands, and these
rise over the island slopes due to the orography leading to condensation and cloud growth resulting
in three layers: (1) a layer of fresh and moist air at low levels, (2) a subsidence inversion layer with
temperature increase, and (3) a layer of dry and clear air at high levels. However, the movement of
these winds below 1000 m is very affected by the abrupt orography such as small valleys, forests, cliffs,
etc., which lead and channel the winds at lower levels (Figure 2).

Teide volcano
W 3,718 m

Figure 2. Orographic model of the Tenerife Island (Google Maps).

The most significant precipitation occurs when disturbances break the inversion layer that are
associated with low pressure or due to disturbances in upper levels (troughs), which cannot be detected
at the surface level and are only evident when upper layers are analyzed [31].

The latter are the disturbances causing rainfall in the oriental islands with lower orography,
but these also significantly affect the rest of the islands in the archipelago.

Despite all of the above, according to several authors, the climate in the Canary Islands is generally
stable with a high signal-to-noise ratio in meteorological observations [30], which is why it is relatively
easy to determine an actual “trend” over time as the background fluctuations do not vary significantly.
Nevertheless, other authors consider that these relatively low precipitation rates, on the contrary,
introduce higher noise in the time series of rainfall measurement [33], which makes their study
more complicated.

This is one of the aspects that has led to the use of climatic studies based on statistical techniques [34]
as long as a complete meteorological database is used.

Although the relief is the main factor that affects the local rainfall distribution [31], the combination
of the above-mentioned factors makes rainfall prediction difficult at the local level. A temporal analysis
of the rainfall distribution on the island of Tenerife shows that it is not homogeneous over the period of
time analyzed (1976 to 2016). However, certain seasonality is observed over the months from January
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to March and from October to December. High precipitation rates are observed over certain periods,
which do not always coincide with the traditionally rainier months of the year (Figure 3).
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Figure 3. The graphic shows asymmetric precipitation distribution and outliers. Monthly rainfall of
forty-one years on the island of Tenerife (1976 to 2016). The non-rainy months are in orange and the
rainy ones are in red.

In the present work, global and local meteorological parameters are used for the development of a
predictive model. Global parameters are associated with precipitation and meteorological phenomena
occurring in the archipelago on average, an issue which has been already studied by other authors.
For instance, in [35], the authors relate the NAO index and heavy rainfall in the winter season in Spain;
in [31], the authors highlight the importance of predicting global parameters and their relationship
with rainfall in the Canary Islands and use it to characterize precipitation rates in the archipelago, and,
in [34], to predict the intensity of monsoon rains in India.

We obtained local parameters from measurements of meteorological stations and from reanalysis
of databases from NOAA (NCEP/NCAR Reanalysis). In this study, we worked with the following
parameters for the development of a rainfall predictive model in the island of Tenerife. On the one hand,
NAO global parameter and local reanalysis parameters: (1) Sea Level Pressure (SLP); (2) Sea Surface
Temperature (SST) and (3) geopotential height 500-hPa (GPH). On the other hand, local parameters
from meteorological stations: (1) monthly accumulated rainfall and monthly measurements of
(2) temperature, (3) wind speed, (4) pressure, and (5) relative humidity. More information on the
units of the meteorological parameters can be found in Appendix A. For the island of Tenerife, two
meteorological stations were selected from the ones available (Figure 4): Santa Cruz de Tenerife
meteorological station (C449C) and the meteorological station at Tenerife North Airport (C447A)
(Table 1).

Figure 4. Main weather stations on Tenerife island (Grafcan).
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The main reason for using data from only these two meteorological stations is that they are the
only ones with 41 years of continuous data. Despite their proximity, both stations are a good example
of the island’s dry and humid climates, due to the island’s complicated orography.

In addition, the station (C449C) is located in the most populated city on the island and contains its
main port with the largest number of tourist cruises. The station (C447A) is only 10 km away from the
previous one, but with a difference in height of about 600 meters and oriented to the trade winds that
give it completely different climatic characteristics.

Table 1. Main weather stations on Tenerife Island. The asterisk * identifies the selected Tenerife North
Airport and Santa Cruz de Tenerife weather stations.

ID Location Altitude (m) Latitude Longitude
C406G La Orotava 2150 28°13'27” 16°37'35"
C419X Adeje 130 28°4’53” 16°42740”
C428T Arico 418 28°10'52” 16°29'1”
C4291 Tenerife Sur Aeropuerto 64 28°2749” 16°33’40”
C430E Izafia 2371 28°18/32” 16°29’58”
C438N Candelaria 463 28°21'32” 16°24'5”
C439] Gliimar 115 28°19'6” 16°22’56"
C446G San Cristébal de La Laguna 868 28°31'36” 16°16’50”
C447A Tenerife Norte Aeropuerto* 632 28°28'39” 16°19'46”
C449C SC de Tenerife* 35 28°27'48” 16°1519”
C449F Anaga 19 28°30'29” 16°11744"
C4571 La Victoria de Acentejo 567 28°26’5” 16°27'17"
C458A Tacoronte 310 28°29'47” 16°25"12"
C459Z Puerto de la Cruz 25 28°25’'5” 16°32’53"
C468B San Juan de la Rambla 370 28°23'23” 16°37'47"
C469N Los Silos 28 28°22/43” 16°49’3”

3. Materials and Methods

This section describes the methodology and data used in the experiments and also includes a brief
description of the machine learning algorithms used in the determination of the prediction models.

There exist several methods for analytical processes among which the most popular methodologies
are a Cross-Industry Standard Process for Data Mining (CRISP-DM) [36] and Sample, Explore, Model,
and Assess (SEMMA) [37]. CRISP-DM and SEMMA are similar although they differ in the definition
of the stages and the number of stages [37]. Our proposal consists of the following phases that result in
an acceptable predictive model: (1) training (apply a machine learning algorithm to the training data
set so that the model learns), (2) validation (estimate the error of a predictive model with unseen data),
(3) hyperparameters (there is no way to know beforehand which parameters of the algorithm throw
the best model, and it is therefore necessary to apply validation strategies), and (4) prediction (once
the model is obtained, it is used to predict new observations). Figure 5 presents a flowchart of the
proposed method.
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selection and scaling Hyperparameter O ptimization . n
| Evaluation Final
Raw Climate C
L . . ompare Models
Machine Leamnin "
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Figure 5. General flowchart of the proposed method.
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3.1. Model and Data Acquisition

The reason behind the development of a monthly predictive model is the importance, from
an economic point of view, of the evaluation of short-term precipitation trends (monthly periods).
The presence of effective data sources is essential in the development of a rainfall predictive model.
The elaboration of the model has been decided over the analysis of monthly accumulated rainfall
data [2], which shows some seasonality and high concentration of low precipitation values.

The response or class variable depends on the maximum monthly accumulated rainfall registered
in both stations (C447A and C449C) over a period of time of 41 years (1976 to 2016). The accumulated
rainfall registered determines whether a month is wet or dry, thus creating a binary classification
predictive model (dry or wet).

The group of predictors for the development of the model consists of local variables from the
meteorological stations, reanalysis variables available on a 2.5° 3 X 2 grid from 29.5 N to 185 W
and 27.5 N to 13.5 W, covering the whole Canary Islands archipelago- and the NAO index. Local
variables have been taken from the NOAA database, using the R software package, stationary [38] and
RNCEP [39].

Among the classification problems, an imbalance in the frequencies of the observed classes can
have a significant negative impact on the effectiveness of the model [40-42]. A data set is imbalanced if
the classification categories are not approximately equally represented [43,44]. A possible remedy to
solve such class imbalance is to resample the training data in a way that mitigates these problems [43].

Finding the best model is not a trivial issue; there are many (several tens) of algorithms, each one
of them with their own characteristics and with different parameters that need to be adjusted [45-47].

In the model training, validation and search for hyperparameters, several metrics are used that
allow for assessing the quality of the machine learning algorithm in its predictions. The optimal metric
depends entirely on the problem to be solved. In the present work, months are classified into the
categories of rainy or non-rainy months. Accuracy and kappa metrics are among the most popular
used in binary and multiclass classification problems. Accuracy allows us to assess the percentage of
observations correctly classified with respect to the total of predictions, and kappa is the normalized
accuracy value with respect to the percentage of hits expected [48-50].

3.2. Algorithms and Frameworks

In this paper, several algorithms were examined for goodness of fit.

Random forest (rf) is an aggregation technique suggested in [51] and considered one of the most
precise general purpose tools. It consists of the creation of several decision trees over samples of a
data set generated by random sampling with replacement. Its basic principle consists of injecting
randomness to the construction of each individual tree to improve accuracy of the aggregated model.

Linear Discriminant Analysis (lda) [52] is a linear transformation technique used to reduce
dimensionality. lda determines the directions (linear discriminants) representing the axes that
maximize the separation between multiple classes.

Logistic Model Trees (Imt) combine model trees and logistic regression functions at the leaves.
A stagewise fitting process is used to construct the logistic regression models that can select relevant
attributes in the data [53].

Generalized Linear Model (glm) is a generalization of classic linear regression. Generalized linear
models were presented [54] in 1998 as a way of unifying several other statistical models including linear
regression, logistic regression, and Poisson regression under one theoretical framework. This allowed
them to develop a general algorithm to estimate maximum likelihood in all these models.

In 1992, Vapnik [55] presented support vector machines (svm), a specific class of algorithms
characterized by the usage of kernels, absence of local minima, and control over the number of
supporting vectors. Support vector machines can be applied both to classification and regression
problems [56].



Appl. Sci. 2019, 9, 4931 90f 17

Friedman [57,58] presented the Stochastic Gradient Boosting (gbm) algorithm. This algorithm
employs several models that aggregate and result in a final model with better predictive accuracy than
that of the models used individually.

The eXtreme Gradient Boosting (XGBoost) software library is an open source implementation of a
supervised learning algorithm that attempts to predict in an appropriate way a destination variable by
combining estimations of a group of simpler and weaker models. It offers several advanced features
for model tuning, computing environments, and algorithm enhancement [59]. XGBoost is suitable for
performing the three main forms of gradient boosting, and it is robust enough to support fine-tuning
and inclusion of regularization parameters. XGBoost has proven to work quite well in automatic
learning competitions.

Nowadays, several frameworks are used to work with predictive models such as CORElearn [60],
mlr [61], or Scikit-learn [62]. In the present work, we used the caret package (Classification and
Regression Training) [63]. Caret is an interface that unifies under just one framework several machine
learning packages, making data preprocessing, training, optimization, and validation of predictive
models easier, and with native support for parallel calculations [43].

3.3. Experiments

The experiments were carried out using the methodology presented and the meteorological data
selected. The reanalysis local variables of the grid are averaged monthly, as well as the variables
measured in meteorological stations and the NAO index (Table 2). Initial predictors for the construction
of the model totals for 12 predicting variables and one response or class variable, with a total of 492
instances corresponding to the months between the years comprised (1976-2016) [2]. The process to
prepare the data for the construction of a machine learning predictive model consisted of three steps:
selection, preprocessing, and transformation. During the preprocessing of the data set, outliers and
highly correlated predictors were identified and removed. It is very important to observe how the
attributes relate to each other. An excellent way to analyze interactions between numerical attributes
is calculating correlations between each pair. These pair correlations can be plotted in a correlation
matrix to give an idea of which attributes change together. Zero deviations show a more positive or
negative correlation. Values above 0.75 or below —0.75 are perhaps more interesting, as they show a
high positive correlation or a high negative correlation. Values 1 and -1 show a full positive or negative
correlation. In the graph, it can be seen that some of the attributes are highly correlated (Figure 6).
Outliers and highly correlated in data can distort predictions and affect the accuracy. Clustering of the
class variable was obtained with the K-medoids clustering algorithm or PAM (Partitioning Around
Medoids), which is less sensitive to outliers compared to k-means [64]. The optimal number of clusters
determined was two. The first (C4yy) with in the range of [0 to 125] mm/month of rainfall, and the
second (Cy.et) with [126 to co] mm/month of rainfall.

Table 2. Shortlisted predictors and their representation.

Predictors Representation

Monthly measurements of temperature S. Cruz de Tenerife °C Ts
Monthly measurements of wind speed S. Cruz de Tenerife in meters per second Ws
Monthly measurements of sea level pressure S. Cruz de Tenerife in millibar Ps
Monthly measurements of relative humidity S. Cruz de Tenerife in % Rhs
Monthly measurements of temperature Tenerife North Airport °C Ta
Monthly measurements of wind speed Tenerife North Airport in meters per second Wa
Monthly measurements of sea level pressure Tenerife North Airport in millibar Pa
Monthly measurements of relative humidity Tenerife North Airport in % Rha
North Atlantic Oscillation NAO
Geopotential Height in 500-hPa GPH
Sea Level Pressure in Pascal SLP

Sea Surface Temperature °C SST
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Figure 6. Identification of highly correlated predictors (conf. level = 0.95). It shows the between-
predictor correlations of the transformed continuous predictors; there are many strong positive
correlations (indicated by large, dark blue circular sector).

The imbalances in the frequencies of the observed classes (unbalanced classes) were treated to
avoid having a negative impact on the predictive models. The random sampling (with replacement)
carried out allows the minority class to be the same size as the majority class. Predictors were
preprocessed so that they would work with the ML algorithm or improve their results [65]. We selected
the cases with 80% proportion for training and with 20% proportion for testing in order to estimate
how the model would perform with unseen data. Data preprocessing was learned from the training
observation and was later applied to the testing set (e.g., centering and scaling of data were carried
out).

The ML algorithms selected allow the construction of a predictive model that is able to represent
the patterns present in the training data set and generalize these in new observations (Table 3).

Table 3. Algorithms applied, training, testing metrics, and level of interpretability.

Algorithm Training Error Rate Test Error Rate Level of Interpretability
Accuracy Kappa Accuracy Kappa
Logistic Model Trees (Imt) 0.81 0.39 0.75 0.25 High
Linear Discriminant Analysis (Ida) 0.76 0.41 0.65 0.28 High
Generalized Linear Model (glm) 0.77 0.42 0.64 0.26 Medium
Support Vector Machines (svmPoly) 0.8 0.47 0.73 0.34 Low
Random Forest (rf) 0.83 0.43 0.77 0.32 Medium
Stochastic Gradient Boosting (gbm) 0.84 0.48 0.76 0.32 Low
eXtreme Gradient Boosting (XGBoost) 0.86 0.54 0.77 0.34 Low

These algorithms are among the most representative (linear, nonlinear, and ensemble) and their
optimal hyperparameters are shown in Table 4. The first step in tuning the model is to choose a set of
parameters to evaluate. Once the model and tuning parameter values have been defined, the type of
resampling should be also be specified. After resampling, the process produces a profile of performance
measures available to guide the user as to which tuning parameter values should be chosen. By default,
the caret package automatically chooses the tuning parameters associated with the best value, although
different algorithms can be used. In this experiment, we use grid search and random search. Five-fold
cross-validation was run. The final predictive models were evaluated with the test data set to estimate
the prediction ability of each model (Table 3).

Preprocessing, training, optimization, and validation of the predictive models were carried out
with Caret package [43,63].
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In the following figures (Figures 7-9), the variation of the accuracy coefficient can be observed as

a function of the different tuning parameters of the three best models: rf, gbm, and XGboost.

Table 4. Selected algorithms and optimal hyperparameters of the proposed models (tuning).

Algorithm Hyperparameter Optimization or Tuning (Main Parameters)
lda none
Imt iter = 1121 (number of iterations)
gml none
svm degree = 3, scale = 0.01, C = 8 (degree of the polynomial, Bessel or ANOVA kernel function; scaling parameter of
the polynomial and tangent kernel; controls the smoothness of the fitted function)
rf mtry = 2 (number of predictors sampled for spliting at each node)
n.trees = 1000, interaction.depth = 7, shrinkage = 0.1, n.minobsinnode = 0.1 (total number of trees to fit;
gbm maximum depth of each tree; learning rate or step-size reduction; minimum number of observations in the
terminal nodes of the trees)
nrounds = 50, max_depth = 4, eta = 0.3, gamma = 0, subsample = 0.722, colsample_bytree = 0.6, rate_drop = 0.5,
skip_drop = 0.95, min_child_weight = 1 (number of rounds for boosting; maximum depth of a tree; step size
XGBoost shrinkage used in update to prevents overfitting; minimum loss reduction required to make a further partition on

a leaf node of the tree; subsample ratio of the training instances; subsample ratio of columns when constructing
each tree; dropout rate; probability of skipping the dropout procedure during a boosting iteration; minimum sum
of instance weight needed in a child)
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Figure 7. The accuracy cross-validation profile for a Random Forest model applied the meteorological
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Figure 8. Accuracy variation by tuning parameter profiles (shows partial view) for the eXtreme Gradient

Boosting model using the meteorological dataset [2]. The optimal model used the hyperparameters

shown in Table 4.
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Figure 9. The cross-validation profiles for a Stochastic Gradient Boosting model applied to the Tenerife

meteorological data [2]. The final model was fit using the hyperparameters shown in Table 4.

4. Discussion

In this section, the results obtained in the experiments are shown and discussed. XGBoost and
gbm models are the ones providing highest overall accuracy followed closely by rf. Friedman test was
performed to determine whether the differences in accuracy were significant. For a significance level
o = 0.05 in the Friedman test (p-value = 0.01), evidence was found that the seven classifiers achieve the
same accuracy and therefore Hy was rejected. Box and Whisker Plots allow us to observe the spread
of the estimated accuracies for different methods and how they are related to each other. The boxes
are ordered from highest to lowest mean accuracy. The evaluation metrics are accuracy and kappa
because they are easy to interpret. The algorithms were chosen for their diversity of representation

and learning style (Figure 10).
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Figure 10. Results of the model training. A comparison of the cross-validated Accuracy and Kappa
estimated from XGBoost (eXtreme Gradient Boosting), rf (Random Forest), gbm (Stochastic Gradient
Boosting), Imt (Logistic Model Trees), svm (Support Vector Machine), glm (Generalized Linear Model)
and lda (Linear Discriminant Analysis) for meteorological dataset [2].

Cross-validation methods provide good error estimations for a model, although it is valuable to
make sure that there is no overfitting. All models (Table 3) achieved more correct predictions in the
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training set than in the test set, which is why the metrics obtained in training shall not be used as the
only option to assess the models since these show an overly optimistic result.

The XGBoost model is the one achieving best results both in the training set and in the testing set.
Models based on rf, gbm, and Imt achieve very similar values in the test set. However, according to the
contrast of non-parametric Friedman test and the validation results, the models based on lda and glm
are inferior to the XGBoost model.

If the priority were to maximize the prediction ability of the model, the XGBoost model would be
the best option. However, if interpretability [66] of the model were more important, then the rf or Imt
models would be the most suitable.

The most relevant predictors in the XGBoost model are GPH, Rha, Rhs, which contrasts with gbm
and rf models. It is worth highlighting that, in the models that provided the highest accuracy (models
based on XGBoost, gbm and rf), the NAO predictor is not relevant, which contrasts with the results
obtained in other studies carried out in the Canary Islands (Table 5).

Table 5. Scaled values of the relevance of predictors for gbm, XGBoost, rf, and glm models.

Gbm XGBoost Rf Glm
GPH 100 GHP 100 Rha 100 SST 100
Rha 98.40 Rha 51.97 GHP 86.36 GHP 87.67
Wa 31.49 Rhs 49.58 Ta 41.93 Ws 63.03
Ta 19.72 SST 39.40 Rhs 40.56 Ps 8.11
Rhs 19.22 Wa 32.23 Wa 21.61 Ta 7.33
SST 17.43 NAO 26.52 SST 15.49 Rha 5.24
Ps 13.67 Ws 22.93 NAO 12.09 Wa 3.16
Ws 8.97 Ta 16.46 Ps 5.55 Rhs 2.10
NAO 0.00 Ps 0.00 Ws 0.00 NAO 0.00

5. Conclusions

In the present work, we have used and compared several already established ML algorithms
for monthly rainfall prediction. The performance comparisons and potential applications of learning
machines are presented in this paper. This proposal presents very accurate and interpretable predictive
models. This research is motivated by the idea of making the process of rainfall prediction simpler
and more effective, as well as to overcome the difficulties that other proposals entail. Therefore,
the main contributions of this paper are the following: (i) obtaining and comparing rainfall predictive
models using several machine learning techniques and (ii) assessing whether the combination of
local meteorological variables, NAO index, and the algorithms used has an effect on accuracy of the
predictive models. The power of machine learning seems to be an efficient focus for the prediction
of meteorological patterns such as rain. The results show that, despite what has been maintained
by different authors, in complex orographic geographical areas, global variables such as the North
Atlantic Oscillation Index (NAO) have a very low influence on the predictive model obtained, and
local variables such as Geopotential Height (GPH) are relatively more important than local variables
measured in meteorological stations.

Seasonality predictors have not been applied in the predictive models in order to avoid possible
influence on climatology. Machine learning models for rainfall prediction in regions with similar
complex orography may also perform excellently. The following aspects will be analyzed in the future.
Firstly, long short-term memory (LSTM) networks seem to be suitable for predictions based on time
series data, since there can be lags of unknown duration between important events in these series.
Secondly, Machine Learning for Streams, through monitoring streaming data from weather stations,
is currently one of the most successful applications to forecast data sets in real time. This could be
another research line to be explored.
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Appendix A

This appendix explains and details the equivalences of the units used by some weather predictors
in the International System of Units (SI). Table 2, shows the predictors used in this work with their units.

For atmospheric pressures (Ps, Pa, SLP), it is common to obtain data in millibar units, which,
according to the IAU (International Astronomical Union), although in continuous use, is obsolete.
The SI unit for pressure is the pascal (Pa), equal to one newton per square meter (N/m?).

Equivalence between bar and Pascal:
1 bar = 100,000 Pa = 100,000 N/m?
1mb =1x107 bar

1 mb =1hPa =100 Pa

Geopotential height (GPH) is a vertical coordinate referring to the mean level of the Earth’s sea
whose units are meters and explains the variation of gravity with latitude and altitude. In meteorology,
it is used to express the height at which a given atmospheric pressure (hPa) is found. A geopotential
height chart for a single pressure level in the atmosphere shows the troughs and ridges (highs and
lows), which can be seen in the weather charts.
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