Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/69255
Título: A probabilistic model for explaining the points achieved by a team in football competition: forecasting and regression with applications to the Spanish league
Autores/as: Gómez Déniz, Emilio 
Dávila Cárdenes, María Nancy 
Pérez Sánchez, José María 
Clasificación UNESCO: 5302 Econometría
Palabras clave: Estadísticas deportivas
Distribución lineal
Fútbol
Liga española de fútbol
Covariate, et al.
Fecha de publicación: 2019
Proyectos: Aportaciones A la Toma de Decisiones Bayesianas Óptimas: Aplicaciones Al Coste-Efectividad Con Datos Clínicos y Al Análisis de Riestos Con Datos Acturiales. 
Publicación seriada: SORT 
Resumen: In the last decades, a lot of research papers applying statistical methods for analysing sports data have been published. Football, also called soccer, is one of the most popular sports all over the world organised in national championships in a round robin format in which the team reaching the most points at the end of the tournament wins the competition. The aim of this work is to develop a suitable probability model for studying the points achieved by a team in a football match. For this purpose, we built a discrete probability distribution taking values, zero for losing, one for a draw and three for a victory. We test its performance using data from the Spanish Football League (First division) during the 2013-14 season. Furthermore, the model provides an attractive framework for predicting points and incorporating covariates in order to study the factors affecting the points achieved by the teams.
URI: http://hdl.handle.net/10553/69255
ISSN: 1696-2281
DOI: 10.2436/20.8080.02.81
Fuente: Sort-Statistics And Operations Research Transactions [ISSN 1696-2281], v. 43 (1), p. 95-112
URL: http://dialnet.unirioja.es/servlet/articulo?codigo=7013162
Colección:Artículos
miniatura
pdf
Adobe PDF (437,63 kB)
Vista completa

Citas SCOPUSTM   

4
actualizado el 15-dic-2024

Citas de WEB OF SCIENCETM
Citations

4
actualizado el 15-dic-2024

Visitas

73
actualizado el 17-dic-2023

Descargas

14
actualizado el 17-dic-2023

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.