Please use this identifier to cite or link to this item:
http://hdl.handle.net/10553/69251
Title: | Towards Real-Time Computing of Intraoperative Hyperspectral Imaging for Brain Cancer Detection Using Multi-GPU Platforms | Authors: | Florimbi, Giordana Fabelo Gómez, Himar Antonio Torti, Emanuele Ortega Sarmiento, Samuel Marrero Martín, Margarita Luisa Marrero Callicó, Gustavo Iván Danese, Giovanni Leporati, Francesco |
UNESCO Clasification: | 3314 Tecnología médica | Keywords: | Hyperspectral imaging High performance computing Graphic processing unit Parallel processing Parallel architectures, et al |
Issue Date: | 2020 | Project: | Identificación Hiperespectral de Tumores Cerebrales (Ithaca) Plataforma H2/Sw Distribuida Para El Procesamiento Inteligente de Información Sensorial Heterogenea en Aplicaciones de Supervisión de Grandes Espacios Naturales Hyperspectral Imaging Cancer Detection (Helicoid) (Contrato Nº 618080) |
Journal: | IEEE Access | Abstract: | Several causes make brain cancer identification a challenging task for neurosurgeons during the surgical procedure. The surgeons’ naked eye sometimes is not enough to accurately delineate the brain tumor location and extension due to its diffuse nature that infiltrates in the surrounding healthy tissue. For this reason, a support system that provides accurate cancer delimitation is essential in order to improve the surgery outcomes and hence the patient’s quality of life. The brain cancer detection system developed as part of the “HypErspectraL Imaging Cancer Detection” (HELICoiD) European project meets this requirement exploiting a non-invasive technique suitable for medical diagnosis: the hyperspectral imaging (HSI). A crucial constraint that this system has to satisfy is providing a real-time response in order to not prolong the surgery. The large amount of data that characterizes the hyperspectral images, and the complex elaborations performed by the classification system make the High Performance Computing (HPC) systems essential to provide real-time processing. The most efficient implementation developed in this work, which exploits the Graphic Processing Unit (GPU) technology, is able to classify the biggest image of the database (worst case) in less than three seconds, largely satisfying the real-time constraint set to 1 minute for surgical procedures, becoming a potential solution to implement hyperspectral video processing in the near future. | URI: | http://hdl.handle.net/10553/69251 | ISSN: | 2169-3536 | DOI: | 10.1109/ACCESS.2020.2963939 | Source: | IEEE Access [ISSN 2169-3536], v. 8, p. 8485 - 8501 |
Appears in Collections: | Artículos |
WEB OF SCIENCETM
Citations
28
checked on Nov 24, 2024
Page view(s)
151
checked on May 23, 2024
Download(s)
180
checked on May 23, 2024
Google ScholarTM
Check
Altmetric
Share
Export metadata
Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.