Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/69248
Título: Extended Blind End-Member and Abundance Extraction for Biomedical Imaging Applications
Autores/as: Campos-Delgado, Daniel U.
Gutierrez-Navarro, Omar
Rico-Jimenez, Jose J.
Duran-Sierra, Elvis
Fabelo Gómez, Himar Antonio 
Ortega Sarmiento, Samuel 
Marrero Callicó, Gustavo Iván 
Jo, Javier A.
Clasificación UNESCO: 3314 Tecnología médica
Palabras clave: Blind linear unmixing
Constrained optimization
Fluorescence lifetime imaging microscopy
Hyperspectral imaging
Optical coherence tomography
Fecha de publicación: 2019
Proyectos: Identificación Hiperespectral de Tumores Cerebrales (Ithaca) 
Publicación seriada: IEEE Access 
Resumen: In some applications of biomedical imaging, a linear mixture model can represent the constitutive elements (end-members) and their contributions (abundances) per pixel of the image. In this work, the extended blind end-member and abundance extraction (EBEAE) methodology is mathematically formulated to address the blind linear unmixing (BLU) problem subject to positivity constraints in optical measurements. The EBEAE algorithm is based on a constrained quadratic optimization and an alternated least-squares strategy to jointly estimate end-members and their abundances. In our proposal, a local approach is used to estimate the abundances of each end-member by maximizing their entropy, and a global technique is adopted to iteratively identify the end-members by reducing the similarity among them. All the cost functions are normalized, and four initialization approaches are suggested for the end-members matrix. Synthetic datasets are used first for the EBEAE validation at different noise types and levels, and its performance is compared to state-of-the-art algorithms in BLU. In a second stage, three experimental biomedical imaging applications are addressed with EBEAE: M-FLIM for chemometric analysis in oral cavity samples, OCT for macrophages identification in post-mortem artery samples, and hyper-spectral images for in-vivo brain tissue classification and tumor identification. In our evaluations, EBEAE was able to provide a quantitative analysis of the samples with none or minimal a priori information.
URI: http://hdl.handle.net/10553/69248
ISSN: 2169-3536
DOI: 10.1109/ACCESS.2019.2958985
Fuente: IEEE Access [ISSN 2169-3536], v. 7, p. 178539 - 178552
Colección:Artículos
miniatura
pdf
Adobe PDF (19,67 MB)
Vista completa

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.