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ABSTRACT In some applications of biomedical imaging, a linear mixture model can represent the
constitutive elements (end-members) and their contributions (abundances) per pixel of the image. In this
work, the extended blind end-member and abundance extraction (EBEAE) methodology is mathematically
formulated to address the blind linear unmixing (BLU) problem subject to positivity constraints in optical
measurements. The EBEAE algorithm is based on a constrained quadratic optimization and an alternated
least-squares strategy to jointly estimate end-members and their abundances. In our proposal, a local
approach is used to estimate the abundances of each end-member by maximizing their entropy, and a global
technique is adopted to iteratively identify the end-members by reducing the similarity among them. All
the cost functions are normalized, and four initialization approaches are suggested for the end-members
matrix. Synthetic datasets are used first for the EBEAE validation at different noise types and levels, and
its performance is compared to state-of-the-art algorithms in BLU. In a second stage, three experimental
biomedical imaging applications are addressed with EBEAE: m-FLIM for chemometric analysis in oral
cavity samples, OCT for macrophages identification in post-mortem artery samples, and hyper-spectral
images for in-vivo brain tissue classification and tumor identification. In our evaluations, EBEAE was able
to provide a quantitative analysis of the samples with none or minimal a priori information.

INDEX TERMS Blind linear unmixing, constrained optimization, fluorescence lifetime imaging
microscopy, hyperspectral imaging, optical coherence tomography.

I. INTRODUCTION
For many biomedical applications, the measurements in the
dataset can be modeled by a linear combination of some basic
components [1]–[4]. These studied measurements could be
related to temporal-dynamic responses, spectroscopic and/or
morphological information. In particular, this study is con-
cernwithmeasurements that have just non-negative elements,
for example related to the intensity of optical characteristics,
or spectroscopic information [5]–[9]. The temporal, spectral
and/or morphological profiles of the basic components are
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referred as end-members, and their concentrations in the
measurements are denoted as the abundances. An unmixing
analysis allows a quantitative characterization of a dataset
by identifying the end-members and their corresponding
abundances in a linear mixture model [1]–[3]. Hence,
the problem of jointly estimating the end-members and their
abundances in a dataset is called blind linear unmixing (BLU)
analysis [10]–[12]. The unmixed dataset characterizes the
constitutive components of the sample by classifying the
end-members, and highlights a quantitative study of their
contributions by the abundances [3]. Furthermore, if the
measurements in the dataset can be arranged with some
spatial information, the estimated abundances can provide
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concentration maps of the end-members, or even guide a
segmentation scheme.

There are standard algorithms in the literature for BLU, for
example assuming end-memberswith linear and/or geometric
properties, such as principal component analysis (PCA) or
independent component analysis (ICA) [13]–[15]. However,
classical ICA and PCA do not consider a non-negativity
condition on the resulting end-members, so the estimated
vectors might not have a physical interpretation. In this sense,
for the unmixing of non-negative datasets, non-negative
matrix factorization (NNMF) [16], [17], sparse non-negative
matrix factorization (S-NNMF) [18], non-smooth non-
negative matrix factorization (NS-NNMF) [19], independent
component estimation (ICE) [20], and multi-variate curve
resolution (MCR) [21], [22] are popular methodologies.
Nonetheless, to our knowledge, blind end-member and abun-
dance extraction (BEAE) is the only available computational
tool [3], which estimates non-negative end-members
and abundances, plus the abundances are normalized to
sum-to-one in each measurement (probabilistic interpreta-
tion), and the end-members are also normalized in the dataset.
One important limitation of BEAE is its scaling property,
since the hyper-parameters in the methodology have to be
tuned based on the dataset size, as well as the order of the
linear mixture model. Furthermore, BEAE was focused just
on multi-spectral fluorescence lifetime imaging (m-FLIM).
Finally, in [3], the initialization of the end-members matrix
in BEAE was discussed as a crucial step, but this condition
was not explored further.

In this context, this contribution presents an extension
to our early work in [3] that overcomes the original
limitations of BEAE, where the new methodology is denoted
as extended blind end-member and abundance extrac-
tion (EBEAE) methodology, and we demonstrate its applica-
tion to three different biomedical imaging modalities. Thus,
we first introduce the mathematical formulation of EBEAE,
and describe the estimation scheme based on constrained
quadratic optimization (CQO) and alternated least-squares
(ALS) strategies. We adopt a local approach to estimate
the abundances of each measurement by maximizing their
entropy, and a global technique to identify the end-members.
All the quadratic cost functions are normalized to avoid
the dependence on the dataset size, and four initialization
approaches are suggested for the initial end-members matrix
in the iterative scheme. The performance of EBEAE was first
analyzed in detail for synthetic datasets at different noise
types and levels, and compared to two standard state-of-the-
art BLU algorithms: S-NNMF and NS-NNMF [18], [19].
Three biomedical optical imaging applications are analyzed
experimentally: multi-spectral fluorescence lifetime imaging
(m-FLIM) for chemometric analysis in oral cavity samples,
optical coherence tomography (OCT) for macrophages iden-
tification in post-mortem artery samples, and hyper-spectral
imaging (HSI) for in-vivo brain tissue classification and
tumor identification.

The notation employed in this work is described next.
Scalars, vectors and matrices are denoted by italic, bold-
face lower-case, and boldface upper-case letters, respectively.
A L-dimensional vector with unitary entries and the corre-
sponding identity matrix are defined as 1L , and IL , respec-
tively. For a vector x, its transpose is represented by x>, its l-
th component by (x)l , its Euclidean norm by ‖x‖ =

√∑
l(x)

2
l ,

and |x| stands for a new vector obtained by applying the
absolute value per component. For a matrix X, ‖X‖F =√
Tr(XX>) denotes its Frobenius norm, where Tr(·) expresses

the trace operation; and rank(X) the maximum number of
linearly independent columns in X. A diagonal matrix with
elements in the vector x is defined as diag(x), and for a sym-
metric matrix X, λmin(X) represents its minimum eigenvalue.
For a set X , card(X ) denotes its cardinality, i.e. the number
of elements in the set. A vector x with independent and
identically distributed (i.i.d.) Gaussian entries (zeromean and
variance σ 2) is denoted as x ∼ N (0, σ 2I).
The rest of the paper is organized as follows First,

Section II presents the BLU formulation, the EBEAE syn-
thesis problem and the proposed design methodology. Next,
Section III shows the results obtained in the evaluation of
synthetic datasets, and by using three different experimental
biomedical imaging use cases. Finally, Section IV exposes
the main conclusions achieved during the development of
this work.

II. METHODOLOGY
A general framework is considered in this work, where there
are assumed K spatial measurements of a physical vari-
able in the dataset. These measurements are expressed as
L-dimensional real vectors zk with positive entries, i.e.

zk ∈ RL
∀k ∈ [1,K ] (1)

where zk ≥ 0 (i.e. the inequality is interpreted component-
wise). Next, without loss of generality, all the measurements
Z = {z1, . . . , zK } are scaled to sum-to-one

yk ,
1
sk
zk & sk , 1>L zk , (2)

for numerical stability and to restrict the search space. All
the selected measurements in Z need to satisfy a threshold
on the acquisition signal-to-noise property, since otherwise
the scaling in (2) could enhance the noise contribution and
misguide the BLUmethodology. The scaled measurements in
Y = {y1, . . . , yK } are assumed to be represented by a N -th
order linear mixture model (N ≥ 2 and N < L):

yk =
N∑
n=1

αk,npn + vk ∀k ∈ [1,K ]

=
[
p1 · · · pN

]︸ ︷︷ ︸
P∈RL×N

αk,1...
αk,N


︸ ︷︷ ︸
αk∈RN

+vk = Pαk + vk (3)

178540 VOLUME 7, 2019



D. U. Campos-Delgado et al.: EBEAE for Biomedical Imaging Applications

where pn ∈ RL is the n-th end-member (pn ≥ 0),
αk,n ≥ 0 its abundance in the k-th measurement, and
vk ∈ RL is an uncertainty/noise vector. The elements in vk are
assumed zero-mean and i.i.d. with a Gaussian distribution.
In our formulation, we assume that the set of end-members
P = {p1, . . . ,pN } is linearly independent, i.e. rank(P) =
N . Hence each end-member in P represents a distinctive
temporal, spectral and/or morphological profiles in our
dataset Y; otherwise the dependent end-members are redun-
dant and should be removed from P . The abundances at any
spatial location are normalized to sum-to-one

1>Nαk =
N∑
n=1

αk,n = 1.0 ∀k ∈ [1,K ], (4)

as well as all the end-members

1>L pn = 1.0 ∀n ∈ [1,N ], (5)

such that from (3)-(5), we have 1>L yk = 1.0 for all k ∈ [1,K ].
The scaled measurements, abundances and noise/uncertainty
components in all spatial locations are gathered in the follow-
ing matrices

Y =
[
y1 . . . yK

]
∈ RL×K , (6)

A =
[
α1 . . . αK

]
∈ RN×K , (7)

V =
[
v1 . . . vK

]
∈ RL×K , (8)

and as a result, from the linear model in (3), we use a multi-
plicative structure to model the scaled measurements matrix
Y = PA + V. In BEAE [3], departing from the informa-
tion in Y, the matrices (P,A) are computed based on CQO
and ALS by considering a extended maximum likelihood
estimation [23].

From (2) and (3), the originalmeasurements zk ∀k ∈ [1,K ]
are represented by a scaled linear mixture model

zk =
N∑
n=1

skαk,n︸ ︷︷ ︸
ᾱk,n

pn + skvk︸︷︷︸
ωk

=

N∑
n=1

ᾱk,npn + ωk (9)

where the scaled abundances ᾱk,n are just positive values that
indicate the contribution of the n-th end-member pn in the
k-th spatial location, and the scaled noise/uncertainty vector
ωk preserves its i.i.d. property. In a matrix/vector notation,
the original measurements matrix Z = [z1 . . . zK ] ∈ RL×K

is then expressed as

Z = PAS+� (10)

where S = diag([s1 . . . sK ]) ∈ RK×K is the scaling matrix
(known directly from the dataset), and � = [ω1 . . . ωK ] ∈
RL×K the uncertainty/noise component.

Now, in this contribution, we present the EBEAE strat-
egy by modifying the cost function in [3], in which a new
term is included to rmaximize the entropy of the abundances
in each spatial location [2], [24], and the approximation
error is normalized. With these changes, the selection of the
hyper-parameters will be less sensitive to the experimental

dataset, and the classification capabilities will be improved.
The EBEAE synthesis problem is described next

min
P,A

J (A,P) (11)

where

J (A,P) ,
1
2K

K∑
k=1

‖yk − Pαk‖2

‖yk‖2
−

µ

2K

K∑
k=1

‖αk‖
2

+
ρ

2ϑ

N−1∑
n=1

N∑
j=n+1

‖pn − pj‖2, (12)

and

ϑ ,

{
(N − 1)+ · · · + 1 N ≥ 3
1 N = 2,

(13)

constrained to

A>1N = 1K , A ≥ 0 (14)

P>1L = 1N , P ≥ 0. (15)

By recalling [3], the cost function in (12) can also be written
as

J (A,P) =
1
2
Tr
{
(Y− PA)W(Y− PA)>

}
−
µ

2K
Tr
{
AA>

}
+

ρ

2ϑ
Tr
{
POP>

}
(16)

where W , (1/K )diag([1/‖y1‖2 . . . 1/‖yK‖2]) and
O , N IN − 1N1>N . In (12) or (16), there are only three
hyper-parameters N , µ ≥ 0 and ρ ≥ 0 that will control
the order in the linear mixture model, the priority in the
maximization of the abundances entropy, and the similarity
in the resulting end-members, respectively.

To solve (12) or (16), an ALS strategy is considered by
adopting a combined local vs. global perspectives in each
iteration until convergence [22], [25]:

• If the end-member matrix P is fixed in (12), the abun-
dance vector αk in k-th spatial location is independent
from the rest. Hence all the abundance vectors {αk}Kk=1
are estimated locally for each spatial measurement.

• Meanwhile, if the abundance matrix A is fixed, the end-
member matrix P is estimated by considering all the
measurements in Y with a global technique.

A. ABUNDANCES EXTRACTION
In this section, we assume that the end-member matrix P is
known and fixed, and the cost-function in (12) is written just
with respect to the abundances in the k-th spatial location:

min
αk≥0, α>k 1N=1

1
2
‖yk − Pαk‖2

‖yk‖2
−
µ

2
‖αk‖

2. (17)

This optimization problem is a constrained quadratic formu-
lation [26], whose solution can be deduced by including a
Lagrange multiplier δ > 0 in (17) related to the equality
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restriction. The stationary conditions are then expressed by
a set of linear equations[

1
yk
P>P− µIN 1N

1>N 0

][
αk
δ

]
=

[ 1
yk
P>yk
1.0

]
(18)

where yk , ‖yk‖2. The hyper-parameter µ in (17) is rede-
fined as

µ =
λmin(P>P)

yk
µ̄ ≥ 0 (19)

where µ̄ ∈ [0, 1) is a new normalized parameter, and since
rank(P) = N , we have λmin(P>P) > 0. In this way, if µ̄ = 0,
there is no weight on the abundances entropy, and µ̄ ≈ 1 will
induce a maximal entropy condition during the optimization.
The solution to (18) is given by

αk = 8 ·

(
P>yk −

y>k P81N − 1.0

1>N81N
1N

)
(20)

where 8 ,
(
P>P− µ̄λmin(P>P)IN

)−1
∈ RN×N . If any

entry in the optimal abundance vector in (20) is negative,
the linear equations system in (18) is augmented to restrict
this element to zero, and the solution is recomputed, as was
suggested in [27].

B. END-MEMBERS ESTIMATION
Now, we assume that the abundances matrix A is known and
fixed, and the cost-function in (16) is written with respect to
the end-members matrix P:

min
P≥0, P>1L=1N

1
2
Tr
{
(Y− PA)W(Y− PA)>

}
+
ρ

2ϑ
Tr
{
POP>

}
. (21)

Once more, a Lagrange multiplier is added to consider the
equality restriction [26], but in this case, the new variable is a
vector χ ∈ RL . Due to the quadratic structure in (21), the sta-
tionary restrictions are linear in the unknown variables (P,χ ):

P
(
AWA> +

ρ

ϑ
O
)
− YWA> + 1Lχ> = 0 (22)

P>1L − 1N = 0. (23)

Hence after solving (22)-(23), we obtain the optimal
end-member matrix

P =
(
IL −

1
L
1L1>L

)
YWA>

(
AWA> +

ρ

ϑ
O
)−1

+
1
L
1L1>N . (24)

In the structure of (24), a parameter ρ ≈ 1 will induce esti-
mated end-members with similar temporal, spectral and/or
morphological characteristics among them, and ρ ≈ 0 the
opposite pattern. Similarly to [3], if a matrix element in (24) is
negative, the component is set to zero and the column is next
normalized to sum-to-one. By the structure of (24), as long
as rank(YWA>) = N and L > N , the resulting matrix P will
satisfy rank(P) = N .

C. IMPLEMENTATION
For the implementation of EBEAE, there are three important
steps:
A) The selection of the initialization matrix P̂0, where

this matrix can be obtained from the original mea-
surements {zk}Kk=1 or from previous knowledge of
the dataset. For this step, five strategies are sug-
gested: (I) The mean measurement in Z is used as
starting component, and then there are selected the
remaining N − 1 terms with the minimum cosine
similarity metric (CSM) from this mean component
and subsequent elements inZ , until P̂0 is fully con-
structed; (II) the measurements with the maximum
and minimum accumulated intensities are chosen
first, and then the remaining ones are chosen with
the minimum CSM in Z; (III) the left-singular
vectors (LSV) of the scaled measurements matrix
Y are used in the initial matrix P̂0; (IV) the sources
matrix in the ICA methodology for the scaled mea-
surementsmatrixY is employed as the initial matrix
P̂0 [14], [15]; and (V) the user provides the initial
matrix P̂0. Next, each column in P̂0 is processed
by a rectifier function to guarantee non-negative
vectors, and normalized to sum-to-one to obtain
the initial end-members matrix P0 for the ALS
formulation.

B) The computation of the end-member matrix P,
where this matrix is estimated first inside the ALS
approach by using a random subset Ŷ ⊂ Y with
K̂ numbers of samples (i.e. K̂ = card(Ŷ) where
K̂ < K ). The corresponding measurements and
abundance matrices over Ŷ are denoted as Ŷ and Â.
If (Pi, Âi) are the estimates at the i-th iteration of
the ALS scheme by solving (17) and (21), the con-
vergence is evaluated with respect to the estimation
error at the actual Ji = ‖Y − PiÂi

‖F and previous
Ji−1 = ‖Y− Pi−1Âi−1

‖F iterations, such that

Ji−1 − Ji
Ji−1

< ε (25)

where ε > 0 is the convergence threshold, or if a
maximum number of iterations is reached.

C) The estimation of the complete abundance matrix
A, where this final step is obtained, once P is
defined by considering all the dataset Y in (17), and
computing the corresponding abundances {αk}Kk=1.
Finally, these abundances in A are scaled by S to
reproduce the original dataset Z according to (10).

A block diagram of the EBEAE implementation is illus-
trated in Fig. 1. In fact, the initialization step in A) is critical,
as was pointed out in previous studies for end-members
extraction methods [28], [29]. The four schemes to construct
P̂0 in step A) have interesting interpretations according to
the mixing pattern of the end-members in the sets Z or Y .
In general, we are assuming that the datasetZ might not con-
tain measurements of pure end-members. So, the approach
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FIGURE 1. Block diagram of the EBEAE implementation.

in (I) that departs from the mean measurement in Z assumes
one dominant end-member in the dataset, i.e. its abundance
is high in all the measurements. Next, the approach in
(II) assumes that the measurement intensity is the domi-
nant element to separate the initial end-members, and as a
result, the dataset Z exhibits strong accumulated intensity
variations, so the extremes components (measurements with
maximum and minimum accumulated intensity) are the best
options to initialize the ALS scheme. Meanwhile, the scheme
in (III) considers the orthonormal vectors with maximal vari-
ability for the output space generated by the scaled mea-
surements matrix Y, i.e. related to the temporal-dynamic
responses, spectroscopic and/or morphological information.
If one orthonomal vector has a negative cumulative sum, all
its components are scaled by minus one to obtain a positive
orientation. Finally, the proposal in (IV) employs the iden-
tified sources in the mixing pattern of the ICA formulation
as starting matrix [29], where a simple formulation of this
algorithm is chosen to reduce the complexity in EBEAE [15].
Nonetheless, other initialization procedures could be pur-
sued by pre-processing the dataset Z , for example the ones
reviewed in [28].

III. RESULTS
In this section, we demonstrate initially the application of
EBEAE to synthetic datasets. For this purpose, we repro-
duce synthetically two optical imaging modalities: m-FLIM
and HSI samples. In a second stage, we evaluate with three

experimental datasets: m-FLIM, OCT, and HSI. In all the
examples, the convergence threshold is set to ε = 1× 10−3,
and the maximum number of iterations in the ALS structure
is 50. All the data processing and BLU implementations were
carried out in MATLAB.

A. SYNTHETIC EVALUATION
We first evaluate EBEAE under synthetic datasets at dif-
ferent noise types and levels. Moreover, we analyze the
effect of the four initialization schemes for the end-members
matrix (I, II, III, IV) and the hyper-parameters (ρ, µ̄) in
the estimated end-members and abundances. In addition,
we compare the estimation errors against two state-of-the-art
BLU methods: S-NNMF optimized by NNLS [18], and a fast
version of NS-NNMF based on alternated optimization [19].
To have a fair comparison to EBEAE, the synthetic mea-
surements are scaled prior to the processing of S-NNMF
and NS-NNMF. Furthermore, the resulting matrix decom-
positions by S-NNMF and NS-NNMF do not have inher-
ently the normalization of end-members and abundances of
EBEAE. Hence, if Y = U · H denotes the decompositions
by S-NNMF and NS-NNMF, the columns of U and H are
scaled to sum-to-one prior to compute the end-member and
abundances estimation errors.

To start the synthetic evaluation, we reproduce m-FLIM
datasets where the fluorescence decays are assumed at three
spectral bands with four end-members (N = 4) [30], [31].
Each synthetic dataset has a spatial dimension 100 × 100,
and 186 time samples by spectral band, i.e. K = 100 · 100.
The fluorescence decays per spectral bands are concatenated
in each synthetic measurement, i.e. L = 3 ·186. Two types of
additive noise are applied to each dataset: Gaussian and shot
noise [31], [32]. In this way, if zok denotes the ground-truth
measurement, then the noisy one zk is built as

zk = zok + nk +mk ·

√
zok k ∈ [1,K ] (26)

where nk ∈ RL and mk ∈ RL represent vectors associated
to the noise components, respectively, and the product in
mk ·

√
zok is computed component-wise. The Gaussian noise

vector nk is assumed zero-mean and its standard deviation is
assigned according to a given signal-to-noise ratio (SNR):

σ SNRk =

√
‖zok‖

2

10SNR/10
, (27)

i.e. nk ∼ N (0, (σ SNRk )2 · I). Meanwhile, the component mk
related to shot noise is also defined by a zero-mean Gaussian
vector with standard deviation defined by an specific peak
signal-to-noise ratio (PSNR):

σPSNRk =

√
maxl∈[1,L](zok )l

10PSNR/10
, (28)

i.e. mk ∼ N
(
0, (σPSNRk )2 · I

)
.

After adding the noise components, and for each synthetic
dataset, the EBEAE is applied to the scaled measurements
matrix Y, where in our evaluation, we have ground-truth sets
of end-members P̄ = {p̄1, . . . , p̄n}, i.e. p̄j ∈ RL available.
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Also, we extract the row vectors of abundance in the
dataset for each end-member to generate Ā = {ā1, . . . , ān},
i.e. āj ∈ R1×K

∀j ∈ [1, n]. Hence, if the estimated
sets of end-members and abundances by EBEAE are P =
{p1, . . . ,pn} and A = {a1, . . . , an}, then the estimation
errors are defined as [33]:

Ep =
1

card(P̄)+ card(P)
min

∀ p̄∈P̄, p∈P
‖p̄− p‖ (29)

Ea =
1

card(Ā)+ card(A)
min

∀ ā∈Ā, a∈A
‖ā− a‖. (30)

Note that these previous metrics are relevant since the order
of end-members in P̄ and P , and of the corresponding abun-
dances in Ā andAmight not be the same, so a direct pairwise
comparison is not feasible.

As a first step, we investigate the relation among initializa-
tion process of end-members matrix, and hyper-parameters
(ρ, µ̄), as a function of SNR and PSNR. For this purpose,
as suggested in [31], [32], we consider different noise levels:
(a) SNR ∈ {45, 50, 55} dB and (b) PSNR ∈ {20, 25, 30}
dB, which are challenging conditions for EBEAE, especially
for the variability induced by the shot noise at large intensity
values. We constructed the ground-truth end-members and
their abundance maps for the four components, as shown
in Figs. 2 and 3 (top panels in the figures), such that each

FIGURE 2. One realization of the monte carlo estimation results
(abundance maps) for m-FLIM synthetic datasets (N=4, SNR=50 dB and
PSNR=25 dB) with State-of-the-Art BLU algorithms: A) Ground-truth,
B) EBAE, C) S-NNFM, and D) NS-NNFM.

FIGURE 3. One realization of the monte carlo estimation results
(end-members) for m-FLIM synthetic datasets (N=4, SNR=50 dB and
PSNR=25 dB) with State-of-the-Art BLU algorithms: A) Ground-truth,
B) EBAE, C) S-NNFM, and D) NS-NNFM.

end-member has a spatial area of maximum abundance in
the synthetic dataset. The synthetic end-members are over-
lapping in the three response bands (see top panel in Fig. 3),
so this scenario is quite difficult for any BLU algorithm in
the state-of-the-art. For each combination of SNR and PSNR,
a Monte Carlo evaluation was carried out for the estimation
errors Ep and Ea over 25 noise realizations, and the mean and
standard deviation of these errors are reported.

In the first evaluation, the EBEAE hyper-parameters were
fixed at ρ = 1.0 and µ̄ = 0.0, and the estimation errors Ep
and Ea were computed as a function of the four initialization
schemes (I, II, III, IV) for the end-members matrix P̂o. For
all four initialization schemes, the mean Ep was consistent
to 0.15 in all scenarios despite the noise levels, and just the
lowest variability was obtained by initialization III. Table 1
illustrates the estimation performance for Ea, where Ep was
omitted in the table for brevity. In fact, as the SNR and PSNR
increased, the mean value of Ea was constantly reduced for
the initializations I, III and IV; although, the mean Ea was
more sensitive to PSNR variations. However, the initializa-
tion II, which depends on the intensity variations per mea-
surement to select the end-members, highlighted the most
abrupt error variations in Ea for the SNR and PSNR pairs due
to the induced noise. From this evaluation, we observed that
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TABLE 1. Monte carlo evaluation of EBEAE estimation error Ea with
m-FLIM synthetic datasets (N = 4) under Different SNR and PNSR values:
Evaluation for initialization conditions I, II, III, and IV (ρ = 1.0 and
µ̄ = 0.0) (The estimation error with lowest value for each SNR and PSNR
combination is highlighted.).

the lowest variability in Ep and Ea was mainly achieved by
initialization III.
For this next evaluation, we set the initialization scheme as

III and defined µ̄ = 0.0 to analyze Ep and Ea as a function of
the similarity weight ρ ∈ {0.01, 0.10, 1.0, 10.0} for the same
SNR and PSNR combinations. Once more, in this testing
condition, the changes in ρ did not affect the mean value
of Ep = 0.15 and just its variability was modified by the
pairs (SNR,PSNR). In fact, the variability is quite consistent
for ρ ∈ {0.01, 0.10, 1.0} and its raised for ρ = 10.0. The
performance for Ea is illustrated in Table 2, and it shows that
the lowest mean error is achieved in all cases with ρ = 1.0.

TABLE 2. Monte carlo results of EBEAE estimation error Ea with m-FLIM
synthetic datasets (N = 4) under different SNR and PNSR values:
Evaluation for different similarity weights ρ (initialization III and µ̄ = 0.0)
(The estimation error with lowest value for each SNR and PSNR
combination is highlighted.).

The last evaluation for the hyper-parameters performance
was defined for the entropy weight µ̄ ∈ {0.05, 0.10,
0.15, 0.2} with respect to the (SNR,PSNR) pairs, where the
initial end-member matrix was fixed at III and ρ = 1.0. Our
results showed that there is no tendency of µ̄ in Ep for the
different pairs (SNR,PSNR), i.e. the mean value of Ep = 0.15
was once more achieved in this test. Table 3 illustrates the
estimation error Ea for this last scenario. Hence, when the
noise level is high, i.e. smaller pairs (SNR,PSNR), the values
of µ̄ ∈ {0.10, 0.15} generate smaller errors inEa. As the noise

TABLE 3. Monte carlo results for EBEAE estimation error Ea with m-FLIM
synthetic datasets (N = 4) under different SNR and PNSR Values:
Evaluation for different entropy weights µ̄ (initialization III and ρ = 1.0)
(The estimation error with lowest value for each SNR and PSNR
combination is highlighted.).

level is lower, i.e. larger pairs (SNR,PSNR), the beneficial
effect of µ̄ is reduced.

Now the estimation errors Ep and Ea for EBEAE with
initialization III, and hyper-parameters ρ = 1.0 and µ̄ = 0.1
were compared for different noise levels with the BLU
algorithms (implemented also in MATLAB): S-NNMF and
NS-NNMF [18], [19]. The hyper-parameters for S-NNMF
and NS-NNMF were tuned manually to reduce as much as
possible the estimations errors; and they were selected as
β = 0.1 in S-NNMF, and θ = 0.1 in NS-NNMF for the
m-FLIM synthetic datasets. For the error Ep, its mean value
was the same for the three algorithms (Ep = 0.15), but its
variability was higher in all scenarios for S-NNMF. Table 4
presents the estimation error Ea for EBEAE, S-NNMF, and
NS-NNMF for different (SNR,PSNR) pairs. With respect
to the Ea performance, the lowest mean estimation errors
were always achieved by EBEAE. One realization of the
Monte Carlo evaluation for the estimated abundance maps at
SNR=50 dB and PSNR=25 dB is shown in Fig. 2. In this
figure, as expected, the order of the estimated end-members
is not equal to the ground-truth, but the abundance maps
have similar spatial properties. Nonetheless, as pointed out
in Table 4, the most accurate estimation of the abundance
maps is given by EBEAE compared to the ground-truth.

TABLE 4. Monte carlo evaluation for estimation errors with m-FLIM
synthetic datasets (N = 4) under different SNR and PNSR values:
Comparison with state-of-the-Art BLU algorithms (BEAE: Initialization III,
ρ = 1.0 and µ̄ = 0.1) (The estimation error with lowest value for each
SNR and PSNR combination is highlighted.).
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FIGURE 4. One realization of the monte carlo estimation results
(end-members) for VNIR synthetic hyperspectral image (N=3, SNR=50 dB
and PSNR=25 dB) with State-of-the-Art BLU algorithms: A) Ground-truth,
B) EBAE, C) S-NNFM, and D) NS-NNFM.

For this same noise level, Fig. 3 presents the estimated
end-members for EBEAE, S-NNMF and NS-NNMF, where
although the errors Ep are similar for the three BLU algo-
rithms, our proposal has a more accurate characterization
specially around the second spectral band.

For this last synthetic evaluation, we generated a
visible-near infrared (VNIR) hyperspectral image with three
components (N = 3). The end-members have spectral
responses in the range 450 nm to 950 nm, as shown in the
top panel of Fig. 4. These end-members were motivated by
the VNIR application for tissue classification in [34], [35].
The evaluation scenario for BLU is quite challenging, since
the responses are overlapping in the frequency domain. The
ground-truth abundance maps for the three end-members
are illustrated in the top panel of Fig. 5. The EBEAE
hyper-parameters were slightly tuned to improve the esti-
mation performance: ρ = 0.1 and µ̄ = 0.25, and the
initialization scheme II was considered now. Meanwhile, for
the other BLU algorithms, the hyper-parameters were tuned
also for the best estimation performance: β = 0 for S-NNMF,
and θ = 1× 10−6 for NS-NNMF.
A detailed analysis with respect to Gaussian and shot

noise was carried out for different combination pairs of
(SNR,PSNR). The estimation error results for Ep and Ea

FIGURE 5. One realization of the monte carlo estimation results
(abundance maps) for VNIR synthetic hyperspectral image (N=3,
SNR=50 dB and PSNR=25 dB) with State-of-the-Art BLU algorithms:
A) Ground-truth, B) EBAE, C) S-NNFM, and D) NS-NNFM.

of the Monte Carlo analysis with 25 noise realizations for
each (SNR,PSNR) pair are presented in Table 5. In this
testing scenario, we observed substantial differences in the
estimation of the end-members for the BLU algorithms,
so we present the Ep performance. The results for Ep clearly
show that EBEAE has the lowest mean estimation error,
i.e. the most accurate estimation. This conclusion is veri-
fied in Fig. 4 for SNR=50 dB and PSNR=25 dB, where
the estimated end-members by EBEAE are similar to the
ground-truths. Meanwhile, the S-NNMF estimations pre-
sented variations in the spectral responses, and NS-NNMF
had the poorest performance, since one end-member had a
spectral response practically zero in a large wavelength band.
As showns Table 5, the abundance error Ea in the majority of
the pairs (SNR,PSNR) had the best performance with BEAE,
and in just one case S-NNMF obtained the best response, but
the difference was quite small. Figure 5 shows the estimated
abundance maps for a realization with SNR=50 dB and
PSNR=25 dB, where the spatial resolution of the abundance
maps by EBEAE was similar to the ground-truths. This same
figure illustrates an improved estimation of EBEAE with
respect to S-NNMF and NS-NNMF.

In the overall, this exhaustive synthetic evaluation showed
how to tune the hyper-parameters of EBEAE, and its
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TABLE 5. Monte carlo evaluation of estimation errors Ep and Ea with
VNIR synthetic hyperspectral images (N = 3) under different SNR and
PNSR values: Comparison with State-of-the-Art BLU algorithms (BEAE:
Initialization II, ρ = 0.1 and µ̄ = 0.25) (The estimation error with lowest
value for each SNR and PSNR combination is highlighted.).

advantage in the estimation of end-members and their abun-
dances compared to S-NNMF and NS-NNMF. This improve-
ment is more eloquent in the case of the VNIR datasets, where
the end-members had overlapping in their structure. Next,
we test with three experimental datasets: m-FLIM, OCT, and
HSI, and we focus just on the application of EBEAE.

B. M-FLIM APPLICATION
This experimental biomedical application is focused on imag-
ing the oral cavity to chemically analyse a suspicious lesion.
First, a clinician performed a medical examination of the
patient. Next, in-vivo imaging of clinically suspicious oral
lesions was performed using a handheld multispectral FLIM
(m-FLIM) endoscope [30]. The imaging system consisted
of a handheld box (volume: 7 × 13 × 5 cm3, mass: 450 g)
fittedwith a custom-designed rigid endoscope (length: 14 cm;
diameter: 1.7 cm). A frequency-tripled Q-switched Nd:YAG
laser (355 nm, 1 ns pulse width, 10 kHz max. rep. rate,
Advanced Optical Technology) was used as the excitation
source. A set of dichroic mirrors and filters separated the
emission into three spectral bands (390± 20 nm, 452± 22.5
nm, and 550± 20 nm), each one coupled into separate multi-
mode fibers of different lengths that provide an optical delay
between each spectral band. The multispectral fluorescence
signal is detected by a multichannel plate photomultiplier
tube (25 ps transient time spread, R3809U-50, Hamamatsu),
followed by a preamplifier before being digitized at 6.25 GS/s
by a high-speed digitizer (PXIe-5185, National Instruments)
resulting in a temporal resolution of 160 ps. Two images were
acquired per patient, one from the lesion site (lesion sample),
and one from a normal contralateral site (contrast sample)

FIGURE 6. EBEAE results for m-FLIM application with initialization (II):
Abundance maps in the interval [0,1] for the three end-members
A) lesion sample, B) contrast sample, and C) Estimated end-members
(The abundance maps illustrate the spatial contribution of the
corresponding end-member in the sample, where a pixel close to zero
corresponds to the absence of the end-member in that point, and a pixel
close to one denotes the full concentration of it.).

in the oral cavity. Finally, a biopsy was taken and sent for
histopathological evaluation.

The imaged oral tissue corresponded to a tongue sample
which was diagnosed as squamous cell carcinoma (SCC)
based on the histopathological evaluation. The m-FLIM
database had dimensions 160 × 160 × 1, 125, where the
first two represent the spatial domain, and the last one
the temporal response. The lesion and contrast samples
were analyzed simultaneously by EBEAE with the follow-
ing hyper-parameters: N = 3, ρ = 0.8 and µ̄ = 0.2.
These hyper-parameters were slightly tuned departing from
the best performance in the synthetic evaluation of the
previous section. The results for all the four initializa-
tion schemes I-IV were consistent, and for illustration
purposes Figs. 6 and 7 show the BLU with approaches
II and III. Figures 6(A) and (B) highlights the resulting
abundance maps for the lesion and contrast samples (top
and middle images) and the estimated end-members (bot-
tom plot) for initialization II, where the abundance results
clearly show different chemometric characterizations for the
SCC (lesion) and normal (contrast) tissue samples. Thus,
end-member 2 is only present in the SCC (lesion) sample, and
end-members 1 and 3 in the contrast one. In fact, the time-
profiles of the estimated end-members (see Fig. 6(C)) show
that their peak responses are different for each spectral band.
Meanwhile, Figs. 7(A) -(C) describe the corresponding BLU
for initialization III, where just the order of the character-
istic end-members and corresponding abundance maps in
the SCC (lesion) and normal (contrast) tissue samples is
different with respect to Fig. 6. As a result, with this new
initialization, end-member 3 is now the distinctive for the
SCC (lesion) sample, and once more the end-members illus-
trate different peak responses in each spectral band. Hence,
the EBEAE algorithm detected three distinctive fluorophores
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FIGURE 7. EBEAE results for m-FLIM application with initialization (III):
Abundance maps in the interval [0,1] for the three end-members
A) lesion sample, B) contrast sample, and C) Estimated end-members.

in both tissue samples by the non-trivial abundance maps and
distinctive multi-spectral time-profiles. In fact, the EBEAE
algorithm was also implemented with a higher order model
N = 4, but one of the abundancemaps was trivial. As a result,
the application of EBEAE successfully provided a quantita-
tive representation of the m-FLIM database and highlighted
chemical features for the SCC tissue.

C. OCT APPLICATION
This next biomedical application is aimed to find specific
chemical and morphological markers for an early-detection
of atherosclerosis [36], [37]. Nonetheless, the focus will be
on the morphological structure that an OCT analysis can
highlight. The database consisted of images of post-mortem
artery samples acquired with a 1,310 nm swept-source OCT
imaging system previously described in [37]. The imaged
artery segments underwent histopathological processing, and
the histological sections were stained with CD68 for labeling
macrophages in the sample. The histology sections were cut
from specific points previously inked on the right side of
the artery lumen, in order to match the histology with the
OCT images and abundance maps (dotted lines in Fig. 8(A)).
The dimensions of the OCT datasets are 668 × 800 spatial
pixels and 1,024 axial pixels with a resolution of 8.6 µm. The
OCT B-scan was initially preprocessed to segment the lumen
surface, and align it in all A-lines. Only the first 100 pixels
(860 µm) starting from the lumen surface were analyzed by
the EBEAE. Since the aim is to the detect the presence of
superficial macrophages in the artery sample, a second order
mixing model (N = 2) is used by the EBEAE algorithm, and
the remaining hyper-parameters were ρ = 0.8 and µ̄ = 0.2
(as in the previous section). In this case, the initialization I,
based on the mean measurement in the database, was applied.

Figures 8(A) to (C) show the abundance maps, histopathol-
ogy evaluation, and estimated end-members by EBEAE,
respectively. The presence of macrophages in the artery is

FIGURE 8. EBEAE results for OCT application with initialization (I):
A) Abundance maps in the interval [0,1] for the end-members
macrophages and no-macrophages, B) CD68 histological sections
corresponding to the dotted lines in A) (the dark-brown areas highlight
high concentration of macrophages), and C) Estimated end-members.

characterized by brighter intensity at the beginning of the
profile, and a monotonic decaying rate in the A-line depth.
Consequently, the end-members in Fig. 8(C) were labeled as
macrophages and no-macrophages. The abundance maps and
histology sections in Figs. 8(A) and (B) illustrate an agree-
ment to detect the macrophages in the imaged sample. Once
more, the EBEAE was able to accurately and quantitatively
characterize the sample for this application.

D. HSI APPLICATION
The last application of EBEAE in this work describes the
use of HSI to guide a neurosurgeon to define brain tumour
margins in a surgical procedure [34], [35]. For this purpose,
a VNIR pushbroom camera is used over the spectral range
from 400 nm to 1,000 nm (a spectral resolution of 2–3 nm) to
capture 826 spectral bands and 1,004 spatial pixels per line.
The measured HSI shows an in-vivo brain surface of an adult
patient undergoing craniotomy for resection of intra-axial
brain tumor. After cropping the parenchyma section, the HSI
database with size 377 × 329 × 826, being the first two
the spatial dimensions and the third one the spectral dimen-
sion, was pre-processed before the EBEAE analysis by a
five stages procedure [35]: (i) a radiometric calibration,
(ii) a noise filtering step, (iii) a reduction of the spectral
interval, (iv) a spectral averaging between contiguous bands,
and (v) an intensity normalization. Consequently, the final
database had 129 spectral bands. Some parts of the image
were labeled by using a semi-automatic tool developed to this
end [38]. Hence, a golden standardmap gathered four classes:
normal tissue (NT), tumor tissue (TT), blood vessel (BV), and
background (BG). The class BG includes diverse substances
or materials not relevant for the tumor resection procedure,
as skull bone, dura, skin, or surgical material [34], [35].
Figures 9(A) and (B) show a synthetic RGB representa-
tion (false color) of the studied image, and the resulting
golden standard map. This labeling was performed by a
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FIGURE 9. EBEAE results for hyperspectral images: A) Synthetic RGB
Image (false color), B) Golden Standard Map, C) Classified Image
(Green -Normal Tissue, Red- Tumor Tissue, Blue - Blood Vessel, Black -
Background), and D) Classified and Smoothed Image (The rubber ring
markers presented in A) were employed by the neurosurgeons to identify
the location where the biopsy was performed for the histopathological
assessment.).

neurosurgeon using the previously mentioned tool, and the
final diagnosis was assessed though histopathological anal-
ysis of tissue. All the selected pixels for NT, TT and BV
classes showed a consistent spectral response, except for the
BG class which presented a diverse spectral pattern in the
labeled pixels.

Based on these selected pixels for classes NT, TT and
BV, an average spectral response was generated to identify
representative end-members {pNT ,pTT ,pBV }. By its spec-
tral diverse pattern, the EBEAE was applied just to esti-
mate end-members for the BG class, with the following
hyper-parameters N = 4, ρ = 0.01 and µ̄ = 0, and
initialization II. The similarity weight ρ was chosen small
to allow diversity in the estimated end-members, and the
entropy weight µ̄was null to search for the minimum estima-
tion error. As a result, EBEAE provided four end-members
for the BG class {p1BG,p

2
BG,p

3
BG,p

4
BG}.

Next, the end-members matrix P was constructed with
seven spectral profiles

{pNT ,pTT ,pBV }
⋃
{p1BG,p

2
BG,p

3
BG,p

4
BG},

which described the four classes of studied tissue in the HSI
database. To identify the abundance of each class, the esti-
mation algorithm in (17) is just computed with µ̄ = 0.2.
For the BG class, the corresponding abundance per pixel
of the four profiles {p1BG,p

2
BG,p

3
BG,p

4
BG} were added

together. Figures 10(A) and (B) show the resulting abun-
dance maps and the seven estimated end-members. Finally,
to obtain a hard classification, each pixel was labeled as
(NT, TT, BV, BG) according to the maximum abundance
per pixel, and to smooth the classified regions, morpho-
logical close and open operators with a disk-shaped struc-
turing element of 1 pixel of radius were lastly applied in
sequence [39]. Figures 9(C) and (D) illustrate the classified
and classified-smoothed images, respectively, which as

FIGURE 10. EBEAE results for hyperspectral images: A) Abundance maps
in the interval [0,1] for the four classes (Normal Tissue, Tumor Tissue,
Blood Vessel, Background), and B) Estimated end-members per class (The
abundance maps illustrate the spatial contribution of the corresponding
end-member in the sample, where a pixel close to zero corresponds to
the absence of the end-member in that point, and a pixel close to one
denotes the full concentration of it.).

expected are consistent with the golden standard map and
the previous result in [34]. One important advantage of this
EBEAE application is its low complexity to achieve the
classified image; since in [34], this labeled map requires a
dimentionality reduction, a K-nearest neighbor clustering,
and a support-vector machine classification.

IV. CONCLUSION
In this work, the EBEAE methodology was introduced to
address the BLU problem in biomedical optical imaging
applications subject to positivity constraints. The mathe-
matical formulation of EBEAE was based on CQO and
ALS algorithms. In this formulation, a local approach was
used to estimate the abundances of each end-member in
the measurements by reducing the approximation error and
maximizing their entropy, and a global technique to itera-
tively identify the end-members by minimizing the similarity
among them and also the approximation error. The opti-
mization cost functions were normalized to avoid the depen-
dence on the dataset size, and four initialization approaches
were suggested for the end-members matrix. There are three
hyper-parameters in EBEAE (N , ρ, µ̄). The values of (N , ρ)
are selected according to some a piori information of the
dataset. Hence, the parameter N defines the order of the
linear mixture model, i.e. the number of end-members that
are assumed in the dataset. Parameter ρ is a positive value,
which is close to zero if the end-members are assumed with
different temporal-dynamic responses, spectroscopic and/or
morphological characteristics among them, and close to one
otherwise. Meanwhile, µ̄ ∈ [0, 1) is a parameter related
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to the entropy of the resulting abundances, so a value close
to one induces a maximal entropy during the estimation
process, and close to zero discards this property. Finally,
the initial end-members matrices were suggested by assum-
ing certain structure in the dataset: (i) there is a dominant
end-member in the samples, (ii) the intensity variations in
the measurements are related to the end-members presence,
(iii) the end-members are orthogonal with maximal variabil-
ity in the measurements space, and (iv) the end-members are
statistically independent (ICA perspective). The effect of the
hyper-parameters and initialization schemes in EBEAE was
analyzed under synthetic datasets at different noise types and
levels. In addition, the advantage of EBEAE was highlighted
against two state-of-the-art BLU algorithms (S-NNMF and
NS-NNMF) for the synthetic datasets. To show the generality
of EBEAE, three diverse biomedical imaging applications
were demonstrated experimentally: m-FLIM for chemomet-
ric analysis in oral cavity samples, OCT for macrophages
identification in post-mortem artery samples, and HSI for
in-vivo brain tissue classification and tumor identification.
In all the examples, EBEAE was able to provide a quanti-
tative analysis of the samples with none or minimal a priori
information. The future work in this research line will focus
on implementing a parallel version of EBEAE for the goal
of a real-time application, and applying EBEAE in other
biomedical engineering scenarios.
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